Как сделать регулятор тока для зарядного устройства

Стабилизатор тока для зарядки аккумулятора — зарядное со стабилизацией тока

Чтобы собрать даже самый простой стабилизатор напряжения к зарядному устройству необходимо обладать хоть маломальскими знаниями по физике. Иначе сложно будет понять зависимость физических величин, например, то, как по мере заряда сопротивление аккумулятора увеличивается, ток заряда падает и напряжение растет.

Простое зарядное устройство стабилизатор тока из подручных материалов

Существует огромное число готовых схем и конструкций, позволяющих заряжать автомобильный аккумулятор. Эта статья на тему переделки компьютерного блока питания под автоматическое зарядное устройство автомобильного аккумулятора. В ней рассказывается о том, как собрать автоматический стабилизатор тока с возможностью регулировки выходного тока.

Схема стабилизатора, используемая в нашем собираемом зарядном устройстве, довольно проста и основана на базе операционного усилителя (ОУ) без обратной связи с большим коэффициентом усиления.

В качестве такого операционного усилителя, или правильнее будет его назвать компаратором, используется микросхема LM358. На изображении видно, что она имеет:

  • два входа (инвертирующий и неинвертирующий);
  • один выход.

Задача LM358 состоит в том, чтобы сбалансировать параметры на выходе путём увеличения или уменьшения напряжения на входах.

Зарядное устройство или простой стабилизатор – это прибор, который:

  • сглаживает пульсации сети;
  • поддерживает прямую линию графика тока на одном уровне.

Как это осуществляется? В нашем случае на один вход подаётся опорное напряжение, задаваемое с помощью стабилитрона. Второй вход подключен после шунта, предназначенного для роли датчика тока. Когда подключается к выходу разряженный аккумулятор, в цепи возрастает ток и соответственно возникает падение напряжения на низкоомном резисторе. На микросхеме LM358 появляется разность напряжений между двумя входами. Устройство стремится сбалансировать эту разность, тем самым увеличивая параметры на выходе.

Глядя на схему мы видим, что на выход подключен полевой транзистор, который управляет нагрузкой. По мере заряда аккумулятора на клеммах устройства начинает повышаться напряжение, следовательно, начинает расти оно и на одном из входов ОУ. Возникает разность напряжений между входами, которую ОУ пытается выровнять путём уменьшения напряжения на выходе, тем самым уменьшая ток в основной цепи.

В итоге, аккумулятор заряжается до нужного напряжения, то есть выставленного значения на клеммах зарядного устройства. Падение напряжения на резисторе R3 становится минимальным, либо его не будет вообще. При выравнивании напряжения на входах транзистор закрывается, тем самым отключая нагрузку от зарядного устройства.

Особенностью данной схемы является то, что она позволяет ограничивать ток заряда. Делается это с помощью переменного резистора, который включён последовательно в делитель. И собственно поворачивая ручку этого резистора можно изменять параметры на одном из входов. Возникающую разность опять же выравнивают путём увеличения либо уменьшения параметров.

Универсальных схем не бывает. Кого-то интересует вопрос увеличения тока нагрузки. Например, что нужно поменять в схеме для 15 А? Необходимо будет поставить переменник не 5, а 10 кОм. Так же сделав предварительный расчёт и заменив соответствующие элементы, можно запросто настроить схему под свои нужды.

Сборка устройства

Конечно, интересно посмотреть на готовое самодельное изделие, тогда приступим к сборке устройства. В интернет-магазинах существует много компактных плат под эту схему. Стоимость деталей для сборки данного стабилизатора напряжения обойдётся менее двухсот рублей. Если покупать готовый стабилизатор напряжения, придется заплатить в несколько раз больше.

Все стандартные действия сборки не будем описывать, отметим лишь основные моменты. Транзистор надо размещать на теплоотвод. Почему? Потому что схема линейная и при больших токах транзистор будет сильно нагреваться. Из чего изготовить радиатор? Его можно сделать из обычного алюминиевого уголка и закрепить непосредственно на вентилятор блока питания. И, несмотря на то, что по размерам радиатор достаточно небольшой, благодаря интенсивному обдуву он прекрасно справится со своей задачей.

К радиатору прикручивается через термопасту транзистор, в этой схеме он используется полевой, N-канальный IRFZ44 с максимальным током 49 А. Так как радиатор изолирован от основной платы и корпуса, то транзистор приворачивается напрямую без изоляционных прокладок.

Плату стабилизатора через латунную стойку закрепляется на этот же алюминиевый уголок. Для регулировки выходного тока используется переменный резистор на 5 кОМ. Провода, чтобы не болтались, фиксируются пластиковыми стяжками.

В результате, должна получиться следующая схема подключения данного стабилизатора для зарядного устройства.

Блок питания может быть абсолютно любым, как компьютерным блоком питания, так и обычным трансформатором. Шнур для подключения в розетку используется обычный компьютерный.

Всё готово. Можно теперь использовать такой регулируемый стабилизатор напряжения для зарядного устройства. Надо отметить схема простая и недорогая: одновременно выполняет функции стабилизатора и зарядного устройства.

Источник: ostabilizatore.ru

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

ЗУ на 12 В с регулируемым зарядным током

Как всегда неожиданно пришли холода и снова пришло понимание, что нужно купить для аккумулятора машины зарядный выпрямитель. Все знают, что мороз не нравится батареям, а потому подзаряжать их от сети 220 В приходится чаще. Решено было не инвестировать в дешевые китайские автозарядки из супермаркетов, а попытаться что-то сделать самому.

Зарядное устройство должно заряжать / перезаряжать аккумулятор в автомобиле и на мотоцикле. Предполагалось также, что регулировка тока зарядки будет относительно простой в исполнении, потому что не каждый понимает настройки всяких там HTRC T240. Чтобы плавно настраивать ток, можно использовать эту очень простую схему:

Здесь используются обычные резисторы 0.125 Вт, но решено было поставить 0.5 Вт, из-за высокого напряжения. Также добавлен в схему также второй предохранитель на вторичной стороне трансформатора (10 A) на всякий случай, конденсатор фильтра 2200 мкФ 25 В и вольтметр со шкалой до 20 вольт. Диодный мост KBPC2510. Остальное, как на принципиальной схеме.

Выбор трансформатора для зарядного

В гараже нашелся какой-то старый советский трансформатор 15 В 120 VA и решено было использовать именно его в качестве основы для сборки выпрямителя.

В целом выпрямитель работает очень хорошо. После подключения лампы H4 55/60w напряжение падает примерно до 12 В, и это тоже неплохо. Это первый вариант зарядного, во втором (сделанном на заказ) использовался тороидальный трансформатор 100W 11V 9A (предназначенный для питания галогенок), и после выпрямителя там получалось более 15 В на конденсаторе. Теоретически достаточно подключить к цепи вторичного питания (после диодов моста) конденсатор около 100 мкФ / 25 В и измерить напряжение на нем, если оно достигнет 16-17 В все нормально и вы можете безопасно построить на этом трансформаторе ЗУ к АКБ.

Важно: трансформатор должен давать номинальное напряжение 12 В при нагрузке, а не 12 В на холостом ходу — это напряжение слишком низкое. Если мы используем двухтактный выпрямитель — напряжение будет около 16 В. Использование диодов Шоттки даст еще больше прирост — до 17 В. Напряжение сетки также важно — если намного меньше 220 В — не будем иметь достаточного напряжения.

Если при нагрузке напряжение падает до 12-13 В, батарея не будет полностью заряжена. Для выпрямителя требуемое напряжение составляет около 16 В! Хотя правильное зарядное напряжение — 13,8 В — 14,4 В, рекомендуется с учётом просадки на пару вольт подавать выше.

Читайте также:  Кия венга технические характеристики

Естественно при управлении симистором в первичной обмотке присутствует постоянная составляющая тока, приводящая к насыщению сердечника и многим другим нежелательным явлениям, таким как гудение трансформатора. Большинство трансформаторов, питающихся таким образом, имеют более-менее проявляющиеся подобные симптомы, но лишь немногие не подходят вообще. В конце концов их можно устранить или заметно ослабить (силовые резисторы). Или вообще изменить тип контроля зарядного тока на такой.

Источник: 2shemi.ru

Зарядное устройство на диммере

Иногда радиолюбителю в хозяйстве требуется простой регулируемый источник для испытания и настройки какой-нибудь аппаратуры, а также зарядки не капризных к режиму аккумуляторов.

Для этой цели вполне подойдёт лабораторный автотрансформатор – ЛАТР, который позволяет регулировать входное напряжения от нуля до максимума.

Можно приобрести ЛАТР, подключить к его выходу готовый выпрямитель, в виде диодного моста и конденсатора, а если требуется низкий уровень пульсаций, то добавить сглаживающий LC – фильтр.

Однако, такой источник имеет некоторые недостатки:

  1. Отсутствует гальваническая развязка с питающей сетью (вход и выход ЛАТРа электрически соединены)
  2. Автотрансформатор имеет немалый вес и габариты, что в современных условиях и условиях небольшой мастерской немаловажно.

Первый недостаток можно устранить добавлением дополнительного развязывающего от сети трансформатора, что приведёт к увеличению второго недостатка.

Как –то интересовался в сети схемами регуляторов сварочного тока и наткнулся на такую схему:

На схеме видно, что мощный сварочный трансформатор регулируется по первичной обмотке встречно — включёнными мощными тиристорами VS1, VS2, которые образуют аналог симистора. Регулятор не нарушает работы трансформатора, переменным резистором R7 регулируется задержка открытия тиристоров, относительно начала полупериода сетевого напряжения, за счёт чего и происходит регулировка.

Так выглядит форма тока в первичной обмотке трансформатора:

Схему регулятора можно упростить, при этом количество компонентов схемы
уменьшается :

Подобный регулятор можно изготовить самостоятельно, а можно приобрести готовый, так как схема идентична имеющимся в продаже регуляторам для ламп накаливания – диммерам.

Фото самого диммера:

Возьмём сетевой понижающий трансформатор на 250Вт и соберём схему.

Остаётся дополнить схему простейшим выпрямителем и получаем такое простое, но универсальное устройство:

В итоге получился классический простейший блок питания, с функцией регулировки выходного напряжения. Данный блок можно использовать для питания и настройки разных конструкций, а также для зарядки автомобильных аккумуляторов.

Эту статью мне прислал автор канала Blaze Electronics , статья написана на основе этого видео. Особенно малопонимающим в электронике будет интересно

Что бы не пропустить последние обновления в мастерской, подписывайтесь на обновления в Вконтакте или Одноклассниках, так же можно подписаться на обновления по электронной почте в колонке справа

Не хочется вникать в рутины радиоэлектроники? Рекомендую обратить внимание на предложения наших китайских друзей. За вполне приемлемую цену можно приобрести довольно таки качественные зарядные устройства

Зарядное устройство 12В 1.3А

Простенькое зарядное устройство с светодиодным индикатором зарядки, зеленый батарея заряжается, красный батарея заряжена.

Есть защита от короткого замыкания, есть защита от переполюсовки. Отлично подойдет для зарядки Мото АКБ емкостью до 20Ач, АКБ 9Ач зарядит за 7 часов, 20Ач — за 16 часов. Цена на это зарядное всего 403 рубля,доставка бесплатна

Этот тип зарядного способен автоматически заряжать практически любые типы автомобильных и мото аккумуляторов 12В до 80АЧ. Имеет уникальный способ зарядки в три этапа: 1. Зарядка постоянным током, 2. Зарядка постоянным напряжением, 3. Капельная дозарядка до 100%.
На передней панеле два индикатора, первый указывает напряжение и процент зарядки, второй указывает ток зарядки.
Довольно качественный прибор для домашних нужд, цена всего 781,96 руб, доставка бесплатна. На момент написания этих строк количество заказов 1392, оценка 4,8 из 5. При заказе не забудьте указать Евровилку

Зарядное устройство для самых разнообразных типов аккумуляторов 12-24В с током до 10А и пиковым током 12А. Умеет заряжать Гелиевые АКБ и САСА. Технология зарядки как и у предыдущего в три этапа. Зарядное устройство способно заряжать как в автоматическом режиме, так и в ручном. На панеле есть ЖК индикатор указывающий напряжение, ток заряда и процент зарядки.

Хороший прибор если вам надо заряжать все возможные типы АКБ любых емкостей, аж до 150Ач

Цена на это чудо 1 625 рублей, доставка бесплатна. На момент написания этих строк количество заказов 23, оценка 4,7 из 5. При заказе не забудьте указать Евровилку

Если какой то товар стал недоступен, пожалуйста напишите в комментарий внизу страницы.
С ув. Эдуард Орлов

Распродажа на АлиЭкспресс. Успей купить дешевле!

Источник: rustaste.ru

Сообщества › Сделай Сам › Блог › Стабилизатор тока для зарядного устройства с возможностью регулировки.

Всем привет друзья, в этой записи хочу рассказать вам про стабилизатор тока для зарядного устройства который сможет собрать своими руками практически каждый.

Смотрите также

Метки: sam_электрик, стабилизатор тока, зарядное устройство, акб

Комментарии 102

Случаем печатной платы файлика нет?

Сколько вольт теряются на выходе?

сделал все по вашей схеме. ток регулируется только в промежутке между 4-5А!
подскажите в чем проблема!

Только вот про выбор транзистора и возможно радиатора никто ни слова не сказал :). Еще проще сделать ограничитель тока на lm317, то сути один корпус TO-220 и пару резисторов 🙂 А вообще надо импульсник мутить 🙂

LM317 до 1.5а только. Про транзистор сказал какой поставил, про радиатор тоже сказал. А импульсник вы наверно имели в виду ШИМ регулятор? Да шим конечно намного эффективнее.

Хорошо получилось тоже себе так сделаю! а ты добавь мою функцию и будит вообще огонь…
www.drive2.ru/b/456679132013528242/

Читайте также:  Электродвигатель с датчиком оборотов

Да есть мысли на счет такого. Только не на реле поворотов, а на тймере 555, практически любую паузу можно сделать.

да я про смысл, а не про реализацию, можно сделать по разному хоть на таймере хоть на компараторе, я просто сделал так чтобы большинство народа могло повторить…

Ну и я про идею, норм же приборчик.

у тебя правильный зарядник с регулировкой тока как положено, для обычной зарядки аккума самое то! но если аккум долго не используется или очень редко то его лучше встряхивать (зарад — разряд) и это реально работает, эффект есть… а как это реализовать способов тьма от самых простых, типа как у меня, до долее сложных где переключение между разрядом и зарядом можно делать не только по времени, а ещё например по уровню напряжения на аккуме (как вариант)… я лишь предложил грамотному человеку как ещё можно ваш зарядник прокачать…

Спасибо за хорошее применение старой рухляди а на критику не обращай внимания будь выше этого критикуют в основном те кто сам ни х–я не делает кому проще отдать деньги и не разбираться ни в чем!

Спасибо. Хоть кто то оценил.

Спасибо за хорошее применение старой рухляди а на критику не обращай внимания будь выше этого критикуют в основном те кто сам ни х–я не делает кому проще отдать деньги и не разбираться ни в чем!

Прежде чем писать всякую х–ню, отвечаю твоими же словами, почитай что написал автор, цитирую: “Буду благодарен за адекватную критику” я что не вижу что бы кто то критиковал данное устройство, просто каждый высказывает свое мнение, если есть конкретные предложения по данной теме, высказывай, а нет что тогда всякий бред нести.

Расходимся, это не стабилизатор тока…

Вот чудак человек. Как вас сильно зацепило.

Ну если строго подходить к определению слова СТАБИЛИЗАТОР, то он прав.

Т.е по вашей логике получается, что при использовании “правильного” стабилизатора если включить в цепь ну скажем 12в лампа на 60вт потребляет стабильный ток 5а и даже если лампу заменить на 5-ти ватную то ток тоже будет 5а так как стоит “правильный” стабилизатор.

Попробую ответить. Попрошу только реагировать без эмоций. Я не набрасываюсь. Скажу сразу, что приведенная Вами схема вполне может справляться со своей задачей по зарядке АКБ: схема ограничит максимальный ток, а минимальный будет определяться напряжением на входе стабилизатора и внутренним сопротивлением АКБ (т.е. степенью его заряженности). Строго говоря СТАБИЛИЗАТОР ТОКА поддерживает на нагрузке СТАБИЛЬНЫЙ ТОК. Стабилизатор тока должен обеспечивать постоянство тока, протекающего через нагрузку в независимости от ее сопротивления. Как стабилизатор тока может изменять ток в цепи? Только за счет изменения напряжения, подаваемого на нагрузку. Что бы стабилизатор тока мог справиться со своей задачей, то ко входу стабилизатора тока должен подключаться мощный источник напряжения. Причем этого напряжения должно быть достаточно, чтоб создать ток стабилизации при подключении любой нагрузки (мощной, слабой, т.е. с разным сопротивлением) и мощность источника тоже должна быть способной выдать требуемый ток. Что касается лампы. Если у нас стабилизатор тока (к примеру на 5 А), то при подключении лампы на 12 В и мощностью 60 Вт через лампу потечет ток 5А. При этом стабилизатор тока “выставит” на лампе около 12 В. Если подключить лампу 12 В и 5 Вт, то стабилизатор ТОКА повысит напряжение на лампе до такого номинала, чтоб через нагрузку (лампу) протекал заданный ток 5 А. Для данного примера это будет 144 В. Ясно, что данная лампа, скорее всего, сгорит. Но, как правило, на вход стабилизатора подается вовсе не такое большое напряжение, а, к примеру, 15 В. В этом случае конечно же стабилизатор не сможет обеспечить ток в 5 А. Ток будет определяться этим напряжением и сопротивлением нагрузки. В случае с АКБ по мере заряда начнет расти сопротивление АКБ. Когда сопротивление станет таким, что при 15 В ток не будет равен 5 А, то ток дальше НЕ БУДЕТ СТАБИЛИЗИРОВАННЫМ, а будет определятся входным напряжением (которое более-менее постоянно) и внутренним сопротивлением АКБ (можно считать, что степенью заряженности).

К сожалению получилось много букв. Надеюсь, что разъяснил. Если что-то не так, давайте разбираться вместе.
Ну и снова по поводу схемы в посте. Действительно, обывательски принято подобные устройства называть стабилизаторами тока. Но в строгом смысле они таковыми не являются.

Все именно так. Все так задумывалось. Как обозвать данное устройство подругому я незнаю. Если применить любую другую схему, при таком раскладе, не чего нельзя назвать стабилизатором.

Вы ничего не подумайте, я ничего не имею против вашего варианта зарядки, просто мне интересно.
Еще я хотел бы спросить как Вы проверяете или определяете степень заряда аккумулятора? Судя по видео, то если ток упал до нуля, то значит аккум заряжен на 100 % я правильно понял?
Я когда заряжал свой “Аком”, то выставил напряжение 14,5В, ток, по моему 1/20 потом 1/10 и тоже примерно через часа 4 зарядка автоматом выключилась и показала, что аккум. заряжен на 100% стал проверять плотность ареометром- 1.24 -1,25 что соответствует заряду процентов на 80.

так надо заряжать до 16 вольт, тогда зарядится до 100%

Вопрос был адресован не Вам, а автору, посмотрите видео с 13.40 минуты и Ваш вопрос думаю будет неуместен, а о том как надо заряжать я в курсе

он пошел не тем путем, надо было сделать проще, использовать трансформатор и диодный мост а не мучить старенький АТХ БП. а в интернете много переделок компьютерных БП под ЗУ но там они идут другим путем.

Железный транс такой мощности весит в 5 раз больше и стоит в 5 раз дороже.

можно использовать трансформатор от ненужного ИБП подключив его наоборот только быть внимательней у них бывает обмотки соединены вместе первичка и вторичка (надо разъединить).

Вы имеете в виду бесперебоиник?

Вы ничего не подумайте, я ничего не имею против вашего варианта зарядки, просто мне интересно.
Еще я хотел бы спросить как Вы проверяете или определяете степень заряда аккумулятора? Судя по видео, то если ток упал до нуля, то значит аккум заряжен на 100 % я правильно понял?
Я когда заряжал свой “Аком”, то выставил напряжение 14,5В, ток, по моему 1/20 потом 1/10 и тоже примерно через часа 4 зарядка автоматом выключилась и показала, что аккум. заряжен на 100% стал проверять плотность ареометром- 1.24 -1,25 что соответствует заряду процентов на 80.

Читайте также:  Какую лебедку поставить на уаз буханку

Все верно 80%. Дело в том плотность элекролита в верхну и внизу несколько отличается, так как серная кислота намного тяжелее воды ее концентрация снизу больше соответсвенно и плотность снизу несколько больше, что бы плотность выравнялалась для этого и заряжают до “кипения” что бы электолит несколько перемешался. Но на мой взгляд это абсолютно безполезная процедура. Так как после установки акума в авто и включения стартера акум разряжается, а так как напряжение в борт сети 14.5в то он так и держит эти 80%. Это мое личное мнение оно может отличатся от вашего и это нормально.

Источник: www.drive2.ru

Зарядное устройство для аккумуляторов, с установкой тока и напряжения заряда

Предлагается вариант изготовления зарядного устройства аккумуляторов для бытовых приборов, с установкой тока и напряжения зарядки, со стабилизацией тока на нагрузке.

При периодическом проживании в летнем доме, иногда появляется необходимость в подзарядке различных источников питания для часов, приемника, фонарика. Кроме того, требуют заряда и Li-ion аккумуляторы от старых мобильных телефонов, используемые в изготовленных ранее самоделках. Учитывая то, что используемые аккумуляторы имеют различную форму, габариты и присоединительные размеры, а также различные режимы заряда, необходимо изготовить, в какой-то мере, универсальное зарядное устройство (ЗУ). Так как это ЗУ будет использоваться лишь периодически, изготовлять или приобретать специализированные ЗУ для каждого вида аккумуляторов не имеет смысла.
В связи с этим, для зарядки различных маломощных аккумуляторов, изготовим единое, упрощенное, но надежное зарядное устройство. При зарядке аккумуляторов под периодическим визуальным контролем над окончанием заряда, имея возможность установки режимов (величина стабильного тока и предельное напряжение заряда) такое ЗУ обеспечит качественную работу.

Процесс изготовления зарядного устройства для выполнения поставленной задачи рассмотрен ниже.

1. Установка исходных данных.
Для правильной эксплуатации никель-металлогидридных аккумуляторов рекомендуется поддерживать рабочее напряжение на элементах в пределах 1,2…1,4 вольта, допускается предельное снижение до 0,9 вольта. Быструю зарядку NiMH элементов батарей рекомендуется проводить при напряжении 0,8…1,8 вольта, с величиной тока заряда в интервале 0,3…0,5С.

Рабочее напряжение для Li-ion аккумулятора 3,0. 3,7 вольта. Зарядку аккумулятора необходимо выполнять до предельного напряжения 4,2 вольта, с током заряда в интервале 0,1. 0,5С (до 450 mA при емкости аккумулятора 900 mAh).

Учитывая рекомендации, установим следующие характеристики изготовляемого ЗУ:
Выходное напряжение 1,3. 1,8 вольта (для NiMH аккумулятора).
Выходное напряжение 3,5. 4,2 вольта (для Li-ion аккумулятора).
Выходной ток (регулируемый) – 100. 400 mA (…900 mA).
Входное напряжение – 9. 12 вольт.
Входной ток – 400 mA (1000 mA).

3. Схема зарядного устройства.
Схема ЗУ проста в изготовлении и наладке, не имеет дефицитных и дорогих деталей. Устройство позволяет заряжать различные аккумуляторы стабильным, заранее установленным, током. А также, до начала зарядки, можно установить предельное напряжение, выше которого оно не поднимется на клеммах аккумулятора, в течении всего процессе зарядки.

Изготовим ЗУ по схеме.

4. Описание работы схемы ЗУ.
Узел управления выходным током построен на силовом составном транзисторе VТ1. Максимальную величину выходного тока заряда ограничивает низкоомный резистор R7 (при номиналах деталей указанных на схеме и соответствующем по мощности блоке питания, максимальный ток заряда Li-ion аккумулятора достигает 1,2 А). При отсутствии резистора, необходимого сопротивления и мощности, его можно собрать из нескольких дешевых и распространённых резисторов. Например, в приведенной конструкции, трехваттный резистор R7 сопротивлением 3,4 Ом собран из двух последовательно соединенных групп, по три параллельно включенных резистора МЛТ-1 сопротивлением 5,1 Ом.

На транзисторе VТ2 и резисторах R5, R6 реализован стабилизатор и регулятор зарядного тока. Переменный резистор R6 включен параллельно ограничительному резистору R7 и является датчиком тока. Ток через резистор R6 пропорционален току через резистор R7, но благодаря соотношению сопротивлений имеет значительно меньшую величину, что позволяет управлять выходным током с помощью переменного резистора и транзистора малой мощности.

Под нагрузкой, на датчике тока появляется падение напряжения, пропорциональное проходящему току. При изменении тока зарядки, по различным причинам, соразмерно изменяется падение напряжения на R6 и соответственно управляющее напряжение на базе транзистора VТ2.
При увеличении напряжения на базе VТ2, увеличивается ток К-Э транзистора VT2, снижая напряжение на базе VТ1. При этом, силовой транзистор VT1 начинает закрываться, уменьшая зарядный ток аккумулятора. И наоборот, при уменьшении напряжения на базе VТ2, зарядный ток увеличивается. Таким образом, осуществляется автоматическая корректировка тока в нагрузке – стабилизация тока заряда.

Изменяя сопротивление резистора R6, мы можем установить необходимый ток заряда аккумулятора. После регулировки, происходят аналогичные процессы стабилизации вновь установленного тока.

Узел установки предельного напряжения выполнен на регулируемом стабилизаторе напряжения DA1 (TL431). Подбирая сопротивление резисторов R3 и R4, выбираем оптимальный диапазон регулирования напряжения. С помощью переменного резистора R4 устанавливаем предельное напряжение на выходе (до подключения аккумулятора к ЗУ).

Разъем Х3 используется для установки Li-ion аккумулятора от мобильного телефона. В разъем Х4 возможно установить аккумуляторы цилиндрической формы различной длины, с напряжением 1,2…1,4 вольта. Диоды VD1 и VD2 включены в цепь разъема X4, для понижения напряжения заряда аккумулятора до 1,3. 1,8 вольта и предотвращения разряда аккумуляторов при отключении ЗУ. С помощью выносных щупов с зажимом, можно подключить для зарядки нестандартный аккумулятор с рабочим напряжением до 6… 9 вольт.

5. Изготовление корпуса зарядного устройства
Для корпуса ЗУ используем пластмассовую крышку от старого реле, размерами 90 х 60 х 65 мм. Усиливаем корпус панелью из текстолита для установки разъемов. Сверлим необходимые крепежные отверстия.

6. Комплектуем корпус разъемами и изготовляем нестандартные элементы.

7. Собираем корпус с навесными элементами. На задней панели расположены разъемы – контрольный Х2 (внизу) и входной Х1для соединения с адаптером питания ЗУ. Наверху корпуса расположена панель для установки Li-ion аккумулятора.

8. На передней стороне ЗУ закреплены ложемент и контакты для установки цилиндрических аккумуляторов.

Источник: usamodelkina.ru