Как работает турбина самолета видео

Принцип работы двигателя самолета

Впервые самолет с турбореактивным двигателем (ТРД) поднялся в воздух в 1939 году. С тех пор устройство двигателей самолетов совершенствовалось, появились различные виды, но принцип работы у всех них примерно одинаковый. Чтобы понять, почему воздушное судно, имеющий столь большую массу, так легко поднимается в воздух, следует узнать, как работает двигатель самолета. ТРД приводит в движение воздушное судно за счет реактивной тяги. В свою очередь, реактивная тяга является силой отдачи струи газа, которая вылетает из сопла. То есть получается, что турбореактивная установка толкает самолет и всех находящихся в салоне людей с помощью газовой струи. Реактивная струя, вылетая из сопла, отталкивается от воздуха и таким образом, приводит в движение воздушное судно.

Конструкция

Устройство двигателя самолета достаточно сложное. Рабочая температура в таких установках достигает 1000 и более градусов. Соответственно, все детали, из которых двигатель состоит, изготавливаются из устойчивых к воздействию высоких температур и возгоранию материалов. Из-за сложности устройства существует целая область науки о ТРД.

ТРД состоит из нескольких основных элементов:

Перед турбиной установлен вентилятор. С его помощью воздух затягивается в установку извне. В таких установках используются вентиляторы с большим количеством лопастей определенной формы. Размер и форма лопастей обеспечивают максимально эффективную и быструю подачу воздуха в турбину. Изготавливаются они из титана. Помимо основной функции (затягивания воздуха), вентилятор решает еще одну важную задачу: с его помощью осуществляется прокачка воздуха между элементами ТРД и его оболочкой. За счет такой прокачки обеспечивается охлаждение системы и предотвращается разрушение камеры сгорания.

Возле вентилятора расположен компрессор высокой мощности. С его помощью воздух поступает в камеру сгорания под высоким давлением. В камере происходит смешивание воздуха с топливом. Образующаяся смесь поджигается. После возгорания происходит нагрев смеси и всех расположенных рядом элементов установки. Камера сгорания чаще всего изготавливается из керамики. Это объясняется тем, что температура внутри камеры достигает 2000 градусов и более. А керамика характеризуется устойчивостью к воздействию высоких температур. После возгорания смесь поступает в турбину.

Турбина представляет собой устройство, состоящее из большого количества лопаток. На лопатки оказывает давление поток смеси, приводя тем самым турбину в движение. Турбина вследствие такого вращения заставляет вращаться вал, на котором установлен вентилятор. Получается замкнутая система, которая для функционирования двигателя требует только подачи воздуха и наличия топлива.

Далее смесь поступает в сопло. Это завершающий этап 1 цикла работы двигателя. Здесь формируется реактивная струя. Таков принцип работы двигателя самолета. Вентилятор нагнетает холодный воздух в сопло, предотвращая его разрушение от чрезмерно горячей смеси. Поток холодного воздуха не дает манжете сопла расплавиться.

В двигателях воздушных судов могут быть установлены различные сопла. Наиболее совершенными считаются подвижные. Подвижное сопло способно расширяться и сжиматься, а также регулировать угол, задавая правильное направление реактивной струе. Самолеты с такими двигателями характеризуются отличной маневренностью.

Виды двигателей

Двигатели для самолетов бывают различных типов:

  • классические;
  • турбовинтовые;
  • турбовентиляторные;
  • прямоточные.

Классические установки работают по принципу, описанному выше. Такие двигатели устанавливают на воздушных судах различной модификации. Турбовинтовые функционируют несколько иначе. В них газовая турбина не имеет механической связи с трансмиссией. Эти установки приводят самолет в движение с помощью реактивной тяги лишь частично. Основную часть энергии горячей смеси данный вид установки использует для привода воздушного винта через редуктор. В такой установке вместо одной присутствует 2 турбины. Одна из них приводит компрессор, а вторая – винт. В отличие от классических турбореактивных, винтовые установки более экономичны. Но они не позволяют самолетам развивать высокие скорости. Их устанавливают на малоскоростных воздушных судах. ТРД позволяют развивать гораздо большую скорость во время полета.

Турбовентиляторные двигатели представляют собой комбинированные установки, сочетающие элементы турбореактивных и турбовинтовых двигателей. Они отличаются от классических большим размером лопастей вентилятора. И вентилятор, и винт функционируют на дозвуковых скоростях. Скорость перемещения воздуха понижается за счет наличия специального обтекателя, в который помещен вентилятор. Такие двигатели более экономично расходуют топливо, чем классические. Кроме того, они характеризуются более высоким КПД. Чаще всего их устанавливают на лайнерах и самолетах большой вместительности.

Прямоточные воздушно-реактивные установки не предполагают использование подвижных элементов. Воздух втягивается естественным путем благодаря обтекателю, установленному на входном отверстии. После поступления воздуха двигатель работает аналогично классическому.

Некоторые самолеты летают на турбовинтовых двигателях, устройство которых гораздо проще, чем устройство ТРД. Поэтому у многих возникает вопрос: зачем использовать более сложные установки, если можно ограничиться винтовой? Ответ прост: ТРД превосходят винтовые двигатели по мощности. Они мощнее в десятки раз. Соответственно, ТРД выдает гораздо большую тягу. Благодаря этому обеспечивается возможность поднимать в воздух большие самолеты и осуществлять перелеты на высокой скорости.


Источник: samoleting.ru

Газотурбинный двигатель. Фото. Строение. Характеристики.

Авиационные газотурбинные двигатели.

На сегодняшний день, авиация практически на 100% состоит из машин, которые используют газотурбинный тип силовой установки. Иначе говоря – газотурбинные двигатели. Однако, несмотря на всю возрастающую популярность авиаперелетов сейчас, мало кто знает каким образом работает тот жужжащий и свистящий контейнер, который висит под крылом того или иного авиалайнера.

Принцип работы газотурбинного двигателя.

Газотурбинный двигатель, как и поршневой двигатель на любом автомобиле, относится к двигателям внутреннего сгорания. Они оба преобразуют химическую энергию топлива в тепловую, путем сжигания, а после – в полезную, механическую. Однако то, как это происходит, несколько отличается. В обоих двигателях происходит 4 основных процесса – это: забор, сжатие, расширение, выхлоп. Т.е. в любом случае в двигатель сначала входит воздух (с атмосферы) и топливо (из баков), далее воздух сжимается и в него впрыскивается топливо, после чего смесь воспламеняется, из-за чего значительно расширяется, и в итоге выбрасывается в атмосферу. Из всех этих действий выдает энергию лишь расширение, все остальные необходимы для обеспечения этого действия.

А теперь в чем разница. В газотурбинных двигателях все эти процессы происходят постоянно и одновременно, но в разных частях двигателя, а в поршневом – в одном месте, но в разный момент времени и по очереди. К тому же, чем более сжат воздух, тем большую энергию можно получить при сгорании, а на сегодняшний день степень сжатия газотурбинных двигателей уже достигла 35-40:1, т.е. в процессе прохода через двигатель воздух уменьшается в объеме, а соответственно увеличивает свое давление в 35-40 раз. Для сравнения в поршневых двигателях этот показатель не превышает 8-9:1, в самых современных и совершенных образцах. Соответственно имея равный вес и размеры газотурбинный двигатель гораздо более мощный, да и коэффициент полезного действия у него выше. Именно этим и обусловлено такое широкое применения газотурбинных двигателей в авиации в наши дни.

А теперь подробней о конструкции. Четыре вышеперечисленных процесса происходят в двигателе, который изображен на упрощенной схеме под номерами:

  • забор воздуха – 1 (воздухозаборник)
  • сжатие – 2 (компрессор)
  • смешивание и воспламенение – 3 (камера сгорания)
  • выхлоп – 5 (выхлопное сопло)
  • Загадочная секция под номером 4 называется турбиной. Это неотъемлемая часть любого газотурбинного двигателя, ее предназначение – получение энергии от газов, которые выходят после камеры сгорания на огромных скоростях, и находится она на одном валу с компрессором (2), который и приводит в действие.
Читайте также:  Как полировать фары своими руками

Таким образом получается замкнутый цикл. Воздух входит в двигатель, сжимается, смешивается с горючим, воспламеняется, направляется на лопатки турбины, которые снимают до 80% мощности газов для вращения компрессора, все что осталось и обуславливает итоговую мощность двигателя, которая может быть использована разными способами.

В зависимости от способа дальнейшего использования этой энергии газотурбинные двигатели подразделяются на:

  • турбореактивные
  • турбовинтовые
  • турбовентиляторные
  • турбовальные

Двигатель, изображенный на схеме выше, является турбореактивным. Можно сказать «чистым» газотурбинным, ведь газы после прохождения турбины, которая вращает компрессор, выходят из двигателя через выхлопное сопло на огромной скорости и таким образом толкают самолет вперед. Такие двигатели сейчас используются в основном на высокоскоростных боевых самолетах.

Турбовинтовые двигатели отличаются от турбореактивных тем, что имеют дополнительную секцию турбины, которая еще называется турбиной низкого давления, состоящую из одного или нескольких рядов лопаток, которые отбирают оставшуюся после турбины компрессора энергию у газов и таким образом вращает воздушный винт, который может находится как спереди так и сзади двигателя. После второй секции турбины, отработанные газы выходят фактически уже самотеком, не имея практически никакой энергии, поэтому для их вывода используются просто выхлопные трубы. Подобные двигатели используются на низкоскоростных, маловысотных самолетах.

Турбовентиляторные двигатели имеют схожую схему с турбовинтовыми, только вторая секция турбины отбирает не всю энергию у выходящих газов, поэтому такие двигатели также имеют выхлопное сопло. Но основное отличие состоит в том, что турбина низкого давления приводит в действия вентилятор, который закрыт в кожух. Потому такой двигатель еще называется двуконтурным, ведь воздух проходит через внутренний контур (сам двигатель) и внешний, который необходим лишь для направления воздушной струи, которая толкает двигатель вперед. Потому они и имеют довольно «пухлую» форму. Именно такие двигатели применяются на большинстве современных авиалайнеров, поскольку являются наиболее экономичными на скоростях, приближающихся к скорости звука и эффективными при полетах на высотах выше 7000-8000м и вплоть до 12000-13000м.

Турбовальные двигатели практически идентичны по конструкции с турбовинтовыми, за исключением того, что вал, который соединен с турбиной низкого давления, выходит из двигателя и может приводить в действие абсолютно что угодно. Такие двигатели используются в вертолетах, где два-три двигателя приводят в действие единственный несущий винт и компенсирующий хвостовой пропеллер. Подобные силовые установки сейчас имеют даже танки – Т-80 и американский «Абрамс».

Газотурбинные двигатели имеют классификацию также по другим при знакам:

  • по типу входного устройства (регулируемое, нерегулируемое)
  • по типу компрессора (осевой, центробежный, осецентробежный)
  • по типу воздушно-газового тракта (прямоточный, петлевой)
  • по типу турбин (число ступеней, число роторов и др.)
  • по типу реактивного сопла (регулируемое, нерегулируемое) и др.

Турбореактивный двигатель с осевым компрессором получил широкое применение. При работающем двигателе идет непрерывный процесс. Воздух проходит через диффузор, притормаживается и попадает в компрессор. Затем он поступает в камеру сгорания. В камеру через форсунки подается также топливо, смесь сжигается, продукты сгорания перемещаются через турбину. Продукты сгорания в лопатках турбины расширяются и приводят ее во вращение. Далее газы из турбины с уменьшенным давлением поступают в реактивное сопло и с огромной скоростью вырываются наружу, создавая тягу. Максимальная температура имеет место и на воде камеры сгорания.

Компрессор и турбина расположены на одном валу. Для охлаждения продуктов сгорания подается холодный воздух. В современных реактивных двигателях рабочая температура может превышать температуру плавления сплавов рабочих лопаток примерно на 1000 °С. Система охлаждения деталей турбины и выбор жаропрочных и жаростойких деталей двигателя — одни из главных проблем при конструировании реактивных двигателей всех типов, в том числе и турбореактивных.

Особенностью турбореактивных двигателей с центробежным компрессором является конструкция компрессоров. Принцип работы подобных двигателей аналогичен двигателям с осевым компрессором.

Газотурбинный двигатель. Видео.

Источник: avia.pro

Турбореактивный двигатель самолета: устройство и принцип работы

Совершая полет в самолете в большинстве случаев люди никогда не задумываются о том, как работает его двигатель. Но на самом деле о работе двигателя и реактивной тяги с помощью, которой работает сам двигатель, знали ее в Античное время. Но применить эти знания на практике смогли не так давно, так как раньше не технологии не позволяли никому достичь его исправной работы. Гонка вооружения между Англией и Германией стала толчком к созданию ТРД (турбореактивного двигателя).

В работе ТРД самолета нет никаких сложностей, принцип его работы может понять почти каждый человек. Но данный двигатель имеет несколько нюансов, их соблюдение контролируется под строгим присмотром руководства. Для того чтобы авиалайнер смог держаться в небе, необходима идеальная работа двигателя. Так как от работы двигателя напрямую зависят жизни пассажиров находящихся на борту авиатранспорта.

Принцип работы реактивного двигателя

За работу двигателя отвечает реактивная тяга. Для создания реактивной тяги необходима определенная жидкость, которая подается из задней части двигателя и по ходу ее продвижения увеличивается ее скорость движения вперед. Работу тяги отлично объясняет один из законов Ньютона, звучит он так «Любое действия вызывает равное противодействие».

Вместо жидкости в ТРД используется горючая смесь (газы и воздух со сгоревшими частичками топлива). Благодаря этой смеси самолет толкает вперед и позволяет ему лететь дальше.

Разработки таких двигателей начались в тридцатых годах. Первыми кто начал разрабатывать двигатели такого типа стали немцы и англичане. Но в гонке вооружений одержали победу ученные из Германии, так как они выпустили самый первый в мире самолет с ТРД под названием «Ласточка», данный самолет впервые взлетел в небеса над Люфтваффом. Спустя некоторое время появился и Английский самолет «Глостерский метеор»

Также сверхзвуковые двигатели принято считать турбореактивными, но они отличаются более совершенными модификациями, в отличие от ТРД.

Устройство двигателя имеет четыре главные детали, а именно:

  • Компрессор.
  • Камера горения.
  • Турбина.
  • Выхлоп.

Компрессор

В компрессоре находиться несколько турбин, с помощью которых происходит засасывание и сжатие воздуха. Во время сжатия воздуха, его давление и температура начинает нагнетаться и расти.

Камера горения

После того как воздух проходит турбину и его сжимает до необходимых размеров. Часть сжатого воздуха поступает в камеру горения, где воздух начинает смешиваться с топливом, после чего его поджигают. Благодаря этому увеличивается тепловая энергия воздуха. После смесь выходит из камеры с большой скорости и расширяется.

Турбина

После выхода эта смесь снова попадает в турбину, с помощью высокой энергии газа лопасти в турбине начинают свое вращение. Турбина тесно связанна с компрессором, который находиться в начале двигателя. Благодаря этому турбина начинает свою работу. Остатки воздуха выходят в выхлоп. В момент выхода смеси температура достигает рекордных размеров. Но она продолжает повышать свою температуру с помощью эффекта Дросселирования. После того как температура воздуха доходит до своего пика, она начинает идти на спад и выходит из турбины.

Принцип работы турбореактивного двигателя

В отличие от реактивного двигателя, который пользуется спросом почти у всех самолетов, турбореактивный двигатель больше подходит для пассажирских авиалайнеров. Так как для работы реактивного двигателя необходимо не только топливо, но и окислитель.

Благодаря своему строению окислитель поступает вместе с топливом из бака. А в случаи с ТРД окислитесь, поступает напрямую из атмосферы. А в остальном их работа совершенно идентична и не отличается друг от друга.

Читайте также:  Новый спортейдж тест драйв видео

У турбореактивного двигателя главной деталью является лопасть турбины, так как от ее исправной работы напрямую зависит мощность двигателя. Благодаря этим лопастям и образуется тяга, которая необходима для поддержания скорости самолета. Если сравнить одну лопасть с автомобильным двигателем, то она сможет обеспечить мощностью целых десять машин.

Лопасти устанавливаются за камерой сгорания, так как там нагнетается самое высокое давления, также температура воздуха в данной части двигателя может доходить до 1400 градусов Цельсия.

В целях улучшения прочности и устойчивости лопасти перед различными факторами их монокристаллизируют, благодаря этому они могут держать высокую температуру и давление. Прежде чем установить такой двигатель на самолет его тестируют на полном тяговом усилителе. Также двигатель должен получить сертификат от Европейского совета по безопасности.

Атомный двигатель

В период холодной войны в мире были попытки создания атомного двигателя, за основу был взят турбореактивный двигатель. Главной задумкой ученых было создание двигателя, основанного не на химической реакции радиоактивных веществ, а на вырабатываемом тепле от ядерного реактора. Он должен был находиться на месте камеры сгорания.

В теории воздух должен был проходить через работающую зону реактора, благодаря этому реактор должен был остужаться, а температура воздуха наоборот возрастать. После чело воздух должен был расширяться и выходить через сопла (выхлоп) на этот момент скорость воздуха должна была превышать скорость полета самолета.

В Советском союзе были попытки проведения испытаний подобного двигателя, также ученные в соединенных штатах Америки, вели разработку данного двигателя, и их работа почти подходила к тестам двигателя на настоящем самолете.

Но по ряду причин разработки этого двигателя было решено закрыть. Так как у двигателя было множество недостатков, а именно:

  • Пилоты были подвержены постоянному радиоактивному облучению на протяжении всего полета.
  • Вместе с воздухом через сопла выходили и частички радиоактивного элемента в атмосферу.
  • В том случае если самолет терпел крушение, был очень большой шанс взрыва радиоактивного реактора, что влекло за собой радиоактивное отравление на довольно большой площади.

Источник: vpolete.online

Устройство реактивного двигателя

Реактивный двигатель был изобретен Гансом фон Охайном (Dr. Hans von Ohain), выдающимся немецким инженером-конструкторм и Фрэнком Уиттлом (Sir Frank Whittle). Первый патент на работающий газотурбинный двигатель, был получен в 1930 году Фрэнк Уиттлом. Однако первую рабочую модель собрал именно Охайн.

2 августа 1939 года в небо поднялся первый реактивный самолет – He 178 (Хейнкель 178), снаряженный двигателем HeS 3, разработанный Охайном.

Устройство реактивного двигателя достаточно просто и одновременно крайне сложно. Просто по принципу действия: забортный воздух (в ракетных двигателях – жидкий кислород) засасывается в турбину, там смешивается с топливом и сгорая, в конце турбины образует т.н. “рабочее тело” (реактивная струя), которое и двигает машину.

Так все просто, но на деле – это целая область науки, ибо в таких двигателях рабочая температура достигает тысяч градусов по Цельсию. Одна из самых главных проблем турбореактивного двигателестроения – создание не плавящихся деталей, из плавящихся металлов. Но для того, что бы понять проблемы конструкторов и изобретателей нужно сначала более детально изучить принципиальное устройство двигателя.

Устройство реактивного двигателя

основные детали реактивного двигателя

В начале турбины всегда стоит вентилятор, который засасывает воздух из внешней среды в турбины. Вентилятор обладает большой площадью и огромным количеством лопастей специальной формы, сделанных из титана. Основных задач две – первичный забор воздуха и охлаждение всего двигателя в целом, путем прокачивание воздуха между внешней оболочкой двигателя и внутренними деталями. Это охлаждает камеры смешивания и сгорания и не дает им разрушится.

Сразу за вентилятором стоит мощный компрессор, который нагнетает воздух под большим давлением в камеру сгорания.

Камера сгорания выполняет еще и роль карбюратора, смешивая топливо с воздухом. После образования топливо воздушной смеси она поджигается. В процессе возгорания происходит значительный разогрев смеси и окружающих деталей, а также объемное расширение. Фактически реактивный двигатель использует для движения управляемый взрыв.

Камера сгорания реактивного двигателя одна из самых горячих его частей – её необходимо постоянно интенсивное охлаждение. Но и этого недостаточно. Температура в ней достигает 2700 градусов, поэтому её часто делают из керамики.

После камеры сгорания горящая топливо-воздушная смесь направляется непосредственно в турбину.

Турбина состоит из сотен лопаток, на которые давит реактивный поток, приводя турбину во вращение. Турбина в свою очередь вращает вал, на котором “сидят” вентиллятор и компрессор. Таким образом система замыкается и требует лишь подвода топлива и воздуха для своего функционироваия.

После турбины поток направляется в сопло. Сопло реактивного двигателя – последняя, но далеко не по значению часть реактивного двигателя. Оно формирует непосредственно реактивную струю. В сопло направляется холодный воздух, нагнетаемый вентиллятором для охлаждения внутренних деталей двигателя. Этот поток ограничивает манжету сопла от сверхгорячего реактивного потока и ее дает ей расплавится.

Отклоняемый вектор тяги

Сопла у реактивных двигателей бывают самые разные. Самым передовым считает подвижное сопло, стоящее на двигателях с отклоняемым вектором тяги. Оно может сжиматься и расширятся, а также отклонятся на значительные углы, регулируя и направляя непосредственно реактивный поток. Это делает самолеты с двигателями с отклоняемым вектором тяги очень маневренными, т.к. маневрирование происходит не только благодаря механизмам крыла, но и непосредственно двигателем.

Типы реактивных двигателей

Существует несколько основных типом реактивных двигателей.

Классический реактивный двигатель самолета F-15

Классический реактивный двигатель – принципиальное устройство которого мы описыали выше. Используется в основном на истребителях в различных модификациях.

Двухлопастной турбовинтовой двигатель

Турбовинтовой двигатель. В этом типе двигателя мощность турбины через понижающий редуктор направляется на вращение классического винта. Такие двигатели позволят большим самолетам летать на приемлемых скоростях и тратить меньше горючего. Нормальной крейсерской скоростью турбовинтового самолета считается 600—800 км/ч.

Турбовентиляторный реактивный двигатель.

Турбовентиляторный реактивный двигатель.

Этот тип двигателя является более экономичным родственником классического типа. главное отличие в том, что на входе ставится вентилятор большего диаметра, который подает воздух не только в турбину, но и создает достаточно мощный поток вне её. Таким образом достигается повышенная экономичность, за счет улучшения КПД.

Используется на лайнерах и больших самолетах.

Прямоточный воздушно-реактивный двигатель (Ramjet)

Прямоточный воздушно-реактивный двигатель

Работает без подвижных деталей. Воздух нагнетается в камеру сгорания естественным способом, за счет торможения потока об обтекатель входного отверстия.

Далее все происходит так же как в обычном реактивном двигателе – воздух смешивается с горючим и выходит в виде реактивной струи из сопла.

Использовался на поездах, самолетах, БЛА, и в боевых ракетах, а также на велосипедах и скутерах.

И напоследок – видео работы реактивного двигателя:

Источник: lab-37.com

Турбовентиляторный реактивный двигатель

Реактивный двигатель в свое время дал возможность самолетам преодолевать звуковой барьер и летать на больших скоростях, что стало настоящим прорывом как в гражданской, так и в военной авиации. Но, как это частенько бывает, не все в нем оказалось идеальным. Увеличение мощности повлекло за собой увеличение расхода топлива, что не могло не сказаться на стоимости перелетов. С тех пор авиаконструкторы постоянно ищут решения, позволяющие объединить высокую эффективность с экономичностью. Одним из возможных вариантов является двухконтурный турбореактивный двигатель и в частности его вид – турбовентиляторный реактивный двигатель (ТВРД).

Читайте также:  Как можно проверить температуру без градусника

Турбовентиляторные реактивные двигатели – это все те же газотурбинные двигатели (ГТД), в семейство которых входят практически все современные авиационные силовые установки. ГТД относятся к тепловым машинам, в которых тепловая энергия сгоревшего топлива превращается в механическую. Главной особенностью всех ГТД является наличие турбины – вала с лопастями, которые воспринимают часть выработанной энергии и приводят в движение мотор. Наиболее простыми по строению считаются обычные турбореактивные двигатели (ТРД), состоящие из компрессора, камеры сгорания, турбины и сопла. Но, как было отмечено выше, такая конструкция хоть и обеспечивает необходимую мощность, при этом потребляет много топлива. Самыми же экономными в плане расхода топлива считаются турбовинтовые двигатели (ТВД), у которых тягу создает не реактивный поток, а винт, приводимый в движение турбиной. Правда, самолеты, оснащенные такими моторами, не могут преодолевать звуковой барьер, так что их возможности ограничены. Они используются в гражданской авиации на самолетах, летающих на большие расстояния с дозвуковой скоростью. Авиаконструкторы ищут возможность соединить эти два основных типа ГТД, чтобы получить эффективный и экономичный силовой агрегат, и турбовентиляторный реактивный двигатель – это как раз один из результатов их работы.

Перед тем, как перейти непосредственно к ТВРД, стоит обратить внимание на такое понятие, как двухконтурность реактивных моторов. Двухконтурные турбореактивные двигатели (ТРДД) представляют собой обычные реактивные моторы, оснащенные дополнительным – внешним – контуром, который «обволакивает» их корпус. Между внешним и внутренним корпусом есть кольцевой канал, по которому проходит воздушный поток. То есть, при работе двигателя воздушный поток, который всасывает компрессор, попадает не только во внутренний контур, но и во внешний, что увеличивает расход воздуха и повышает эффективность работы. Степень двухконтурности таких двигателей определяется отношением количества воздуха, которое проходит через внешний контур, к количеству воздуха во внутреннем. Чем больше это значение, тем эффективнее работа силового агрегата.

Устройство

А теперь самое время перейти к турбовентиляторному реактивному двигателю, который как раз и является одним из видов ТРДД со степенью двухконтурности больше 2-х. ТВРД, как двухконтурный двигатель, состоит из первого контура – обычного ТРД, и второго. Первый контур включает в себя вентилятор, компрессор высокого давления, камеру сгорания, турбину высокого давления, турбину низкого давления и сопло. Второй контур представляет собой кольцевой канал с неподвижными лопатками внутри и соплом.

Компрессор высокого давления (КВД), как правило, осевой и состоит из нескольких ступеней, каждую из которых формируют подвижные и неподвижные лопатки, закрепленные на валу. Чем больше ступеней, тем выше степень сжатия воздуха. Подвижные лопатки расположены впереди, они засасывают и сжимают воздушный поток, который потом попадает на неподвижные лопасти, задающие ему осевое направление.

Вентилятор – это своего рода тот же компрессор, его даже порой называют компрессором низкого давления и считают одной из ступеней КВД. Обычно он одноступенчатый, чего вполне достаточно для предварительно сжатия воздуха, но в некоторых случаях встречаются и двух- и трехступенчатые вентиляторы.

Камера сгорания может быть кольцевой или трубчатой. Ее поверхность имеет отверстия для лучшего вентилирования и охлаждения. В самой камере установлены форсунки для подачи топлива.

Турбина высокого давления – это основа мотора. Собственно, это тот же компрессор, только с обратным принципом работы: в случае с турбиной не она воздействует на газовый поток, а поток воздействует на нее, отдавая часть своей энергии. Ее конструкция состоит из неподвижных лопаток, выпрямляющих поток расширенных газов, и подвижных лопаток, которые и создают крутящий момент. Как и компрессор, она может иметь несколько ступеней.

Турбина низкого давления – это свободная турбина, вращающая вентилятор. Она тоже вращается под воздействием расширенных газов Две турбины не связаны между собой механически и работают независимо одна от другой. Вал второй турбины при этом обычно находится внутри вала первой, но есть конструкции, предусматривающие наличие трех валов.

Принцип работы

Принцип работы ТВРД заключается в следующем. Поток воздуха захватывается вентилятором и, частично сжимаясь, направляется по двум направлениям: в первый контур к компрессору и во второй на неподвижные лопатки. Вентилятор при этом играет роль не винта, создающего тягу, а компрессора низкого давления, увеличивающего количество воздуха, проходящего через двигатель. В первом контуре поток сжимается и нагревается при проходе через компрессор высокого давления и попадает в камеру сгорания. Здесь он смешивается с впрыснутым топливом и воспламеняется, в результате чего образуются газы с большим запасом энергии. Поток расширяющихся горячих газов направляется на турбину высокого давления и вращает ее лопатки. Эта турбина вращает компрессор высокого давления, который закреплен с ней на одном валу. Далее газы вращают турбину низкого давления, приводящую в движение вентилятор, после чего попадают в сопло и вырываются наружу, создавая реактивную тягу.

В это же время во втором контуре поток воздуха, захваченный и сжатый вентилятором, попадает на неподвижные лопатки, выпрямляющие направление его движения так, чтобы он перемещался в осевом направлении. При этом воздух дополнительно сжимается, после чего попадает в сопло второго контура и выходит наружу, создавая дополнительную тягу. Два контура обычно не смешиваются между собой, но есть и исключения.

Преимущества и недостатки турбовентиляторных двигателей

Преимущества

Чем же так привлекателен турбовентиляторный реактивный двигатель? В первую очередь он дает возможность экономии топлива без потерь мощности, что так важно для реактивных двигателей. Кроме того, этот мотор менее шумный, чем его «сородичи». Еще одно преимущество – наличие упрощенной реверсной системы тяги. При торможении самолета используется тяга внешнего контура.

Недостатки

Что же касается недостатков, не обошлось и без них. Любые дополнительные компоненты конструкции двигателей – это дополнительный вес, что для авиации очень важно, а дополнительный контур немалых размеров – это довольно существенное увеличение массы мотора. Еще один минус – большие габариты, что ведет к повышению значения лобового сопротивления воздуха во время полета. ТВРД можно безошибочно узнать по характерному виду: они напоминают бочонки с большим сечением. Большой диаметр этих моторов – залог высокой степени двухконтурности, в некоторых моделях через него проходит до 80% воздушного потока. В целях экономии и уменьшения веса второй контур выполняют не по всей длине двигателя, а немного меньше, в результате чего из объемного «бочонка» сзади выглядывает конус первого контура.

Применение

Турбовентиляторные реактивные двигатели успешно используются на современных самолетах отечественного и зарубежного производства. Из «родных» стоит выделить ПС-90А и Д-18Т; из зарубежных — General Electric GE90, CFM56-5А/B, CFM56-5C2.

Сфера применения ТВРД очень широкая. Это наиболее востребованный вид авиационных реактивных двигателей на сегодняшний день, который значительно потеснил свой прототип – классический ТРД. Благодаря своей экономичности, он используется и в гражданской, и в военной авиации. Им оснащаются пассажирские и грузовые самолеты, летающие на дальние и средние расстояния, хотя раньше в целях экономии на них устанавливались ТВД. Сейчас же появилась возможность летать быстро и сравнительно недорого, и все благодаря ТВРД.

Источник: zewerok.ru