Формула максимальной скорости автомобиля

Расчет максимальной скорости автомобиля

Привет друзья! Более года ничего не писал в свой блог, но сегодня что-то пошло не так . Не туда забрел, не там почитал, и пришло вдохновение, желание двигаться вперед.

Это будет не информационный пост как обычно, а некий мануал, калькулятор, который в зависимости от заданных типоразмеров шин, оборотов мотора и указанных передаточных чисел коробки рассчитает, какая будет скорость движения у автомобиля на передачи.

Конечно, калькулятор скорости автомобиля по передаточным числам и шинам производит расчет в идеальных (лабораторных) условиях. В реальных же условиях на конечную скорость автомобиля влияет очень много факторов, начиная от климатических условий и состояния дорожного полотна, и заканчивая настройкой мотора. Другими словами, калькулятор показывает потенциал коробки передач, до какой максимальной скорости она способна разогнать автомобиль.

Калькулятор расчет максимальной скорости автомобиля и КПП

КПП #1 КПП #2
Диаметр (R) колеса * :
Ширина колеса:
Профиль колеса:
Обороты двигателя:
Передаточное число главной пары:
Передаточное число 1 й передачи:
Передаточное число 2 й передачи:
Передаточное число 3 й передачи:
Передаточное число 4 й передачи:
Передаточное число 5 й передачи:
Передаточное число 6 й передачи:

Прогноз максимальной скорости движения авто на передаче:

1 я передача: 23.68 км/ч 24.43 км/ч
2 я передача: 36.34 км/ч 41.52 км/ч
3 я передача: 52.47 км/ч 58.01 км/ч
4 я передача: 69.1 км/ч 73.3 км/ч
5 я передача: 90.21 км/ч 93.04 км/ч
6 я передача: нет км/ч нет км/ч

* Для сликов маркированных в дюймах вводите только R колеса (вводить ширину и профиль не надо).

По умолчанию в калькуляторе расчета передаточных чисел КПП указаны характеристики коробок S4C (КПП #1) и S9B (КПП #2). Выбрал эти коробки не случайно, т.к. первая устанавливалась на Civic EK9, а вторая считается самой длинной МКПП для Б-моторов.

Размеры шин, количество оборотов двигателя, передаточные числа КПП и главную пару Вы можете подставлять на свое усмотрение. Калькулятором представляет собой универсальное средство, поэтому не стоит зацикливаться, что он работает только на КПП предназначенных для Хонды. Коробку ВАЗ’ика он тоже рассчитает без проблем

Внимание ! Калькулятор КПП и максимальной скорости движения автомобиля предоставлен исключительно в ознакомительных целях и не гарантирует 100% достоверных данных!

На форуме есть несколько тем, посвященных Honda коробкам, из которых Вы можете узнать передаточные числа для калькулятора. Информация еще не полная, но со временем, усилиями сообщества обновим топики и сделаем полную подборку характеристик:

– КПП и передаточные числа для моторов B серии;
– КПП и передаточные числа для моторов K серии;
– КПП и передаточные числа для моторов H серии;
– КПП и передаточные числа для моторов F серии.

В завершении поста, хочу заметить, что при установке на автомобиль дисков большего диаметра или шин отличных от стокового типоразмера, спидометр будет выдавать не совсем корректные данные. Единицы отдают его на калибровку, чтобы снимать точные показания, в 99.999% случаев автовладельцы оставляют все как есть. Чтобы узнать, насколько спидометр “обманывает” Вас, в блоге есть еще один полезный инструмент:

Спасибо за внимание и отдельный респект всем тем, кто поделился ссылкой на пост

P.S. По давней традиции, не забывайте подписываться на обновления проекта и нашего паблика ВКонтакте, рассказывать друзьям о проекте, делиться в сети ссылками на интересные посты, оставлять развернутые комментарии по теме, делать ретвиты, ставить лайки, нажимать на “мне нравится”, добавлять посты в гугл плюс и . И конечно же, САМОЕ-САМОЕ ГЛАВНОЕ – приглашаю всех на форум любителей хонда . С момента последнего поста много чего изменилось и форум тоже. Жду всех на форуме

Источник: www.mytyper.ru

Определение максимальной скорости движения автомобиля

График РS(V) определяет величину тяговой силы необходимой для равномерного движения автомобиля в заданных дорожных условиях. Для равномерного движения автомобиля силу РT тяги на колесах автомобиля регулируют подачей топлива и выбором передачи.

Автомобиль движется с ускорением, если сила РT тяги на колесах больше силы РS суммарного сопротивления движению (рисунок 3). При РT = РS автомобиль движется равномерно, его ускорение равно нулю. Если РT PСЦ – ведущие колеса будут пробуксовывать.

Силу РСЦ сцепления ведущих колес при движении автомобиля по горизонтальной дороге можно определить как

P = GCЦ × x, (25)

где GСЦ – сцепной вес автомобиля,

x – коэффициент продольного сцепления колеса с дорогой.

Для автомобиля колесной формулы 4×2, 6×4 GСЦ – часть веса Gа автомобиля, приходящаяся на ведущие колеса. Для автомобилей колесной формулы 4×4, 6×6 GСЦ = Gа.

Значения коэффициента x даны в таблице 7.

Таблица 7

Значение коэффициента для различных дорожных условий

Дорожное покрытие Величина
Асфальт или цементобетон: – сухой, чистый; – влажный; – покрытый снегом; – обледенелый. 0,7…0,8 0,35…0,45 0,2…0,3 0,1…0,2
Грунтовая дорога: – глинистая сухая; – влажная. 0,5…0,6 0,2…0,4
Песчаная дорога: – сухая; – влажная. 0,2…0,3 0,4…0,5
Снег сыпучий. 0,1…0,2

Считая, что дорога с асфальтобетонным покрытием в отличном состоянии, согласно таблице 7 = 0,7. Из технической характеристики «Москвич»-412 И Э GСЦ = 7554 Н. Сила сцепления при = 0,7

Читайте также:  Как рассчитать рассчитать скорость движения встречного автомобиля

Максимальная сила тяги на колесах автомобиля (таблица 3) Р = 4692 Н, т.е. движение без буксования ведущих колес возможно на всех передачах. При движении по глинистой дороге (= 0,5) PСЦ = 3777 Н. Построив график зависимости РСЦ(V) (горизонтальная линия) рис. 3 определим, что движение без буксования с полной подачей топлива возможно только на II, III и IV передачах. На I передаче движение возможно только при скорости более V ≈ 45 км/ч. для движения без буксования со скоростью менее 45 км/ч на первой передаче необходимо уменьшить подачу топлива и соответственно РТ прикрыв дроссельную заслонку.

Источник: megaobuchalka.ru

Расчет максимальной скорости движения одиночного автомобиля

Сайт СТУДОПЕДИЯ проводит ОПРОС! Прими участие 🙂 – нам важно ваше мнение.

При оценке проектных решений эпюра изменения максимальной скорости движения автомобиля может быть использована для выявления участков, на которых элементы плана и продольного профиля не обеспечивают расчетную скорость движения, а также для оценки безопасности движении по методу коэффициентов безопасности.

Скорость движении в любой точке запроектированной дороги как на вертикальных кривых, так и на прямолинейных участках может быть рассчитана по формуле, предложенной К.А. Хавкиным на основе решения дифференциального уравнения движения автомобиля с учетом инерционных сил:

где (23.14)

Vs – скорость движения автомобиля в точке, удаленной на расстояние S от начала элемента продольного профиля, для которого ведется расчет, м/с;

V – скорость движения автомобиля в начальной точке элемента, для которого ведется расчет, м/с;

a, b – коэффициенты уравнения, характеризующие зависимость динамического фактора автомобиля на определенной передаче с заданной степенью открытия дроссельной заслонки (для полностью открытой дроссельной заслонки значения a, b приведены в табл. 23.44);

Коэффициенты а и b

Коэффициенты Значения коэффициентов а и b для автомобилей
ГАЗ-53 ЗИЛ-130 МАЗ-500
V передача
а 0,059 0,048
b 0,00055 0,000036
IV передача (прямая)
а 0,06 0,087 0,061
b 0,000058 0,000105 0,000056
III передача
а 0,103 0,135 0,109
b 0,000167 0,000327 0,000208
II передача
а 0,187 0,243 0,207
b 0.00083 0,0016 0,00127

Примечание. Для расчетного легкового автомобиля на прямой передаче принимают: а = 0,1; b = 0,00076.

f – коэффициент сопротивления качению;

i1 – продольный уклон в начальной точке элемента (для подъема уклон берут со знаком «плюс», для спусков – «минус»);

g = 9,81 м/с 2 ; k2 = 1/R;

R – радиус вертикальной кривой (знак «плюс» берется для выпуклых кривых, знак «минус» – для вогнутых);

d – коэффициент влияния вращающихся масс автомобиля, который может быть определен по эмпирической формуле:

п – коэффициент, принимаемый равным 0,03-0,05 для легковых автомобилей и 0,05-0,07 – для грузовых;

ik – передаточное число коробки передач.

При использовании уравнения (23.14) для расчета скоростей движения на прямолинейных участках в нее подставляют:

При расчетах скоростей движения по уравнению (23.14) на участках со значительными продольными уклонами необходимо проверять возможность движения автомобиля с полученной скоростью на соответствующей передаче. Если полученная расчетом скорость движения не соответствует допускаемой для данной передачи, следует повторить расчет для другой передачи.

Для сложных участков, где скорость ограничивают, исходя из требований безопасности движения, необходимо также сравнивать скорость, определенную по уравнению (23.14), с допустимой скоростью движения на данном участке.

Допустимая скорость движения на кривых в плане:

где

R – радиус кривой, м;

m – коэффициент поперечной силы, принимаемый равным из условия обеспечения устойчивости против заноса автомобиля 0,15-0,20;

in – поперечный уклон проезжей части, принимаемый со знаком «минус» при двухскатном поперечном профиле на кривой, при устройстве виража – со знаком «плюс».

Допустимая скорость движения по переходной кривой:

где

L – длина переходной кривой, м;

J – допустимая скорость нарастания центробежного ускорения, принимаемая равной 0,5-0,8 м/с 2 .

На участках кривых в плане с ограниченной видимостью допустимая скорость движения:

где

j1 – коэффициент продольного сцепления;

i – продольный уклон, ‰;

S – расстояние видимости, м;

Кэ – коэффициент эксплуатационных условий торможения (Кэ = 1,2 – 1,8);

При ограничении видимости на выпуклых переломах продольного профиля вследствие вписывания вертикальных кривых недостаточно большого радиуса, допустимая скорость:

где

i1 , i2 – уклоны сопрягающихся участков продольного профиля;

R – радиус выпуклой вертикальной кривой, м.

Допустимая скорость движения по вогнутым вертикальным кривым:

где

а – допустимое центробежное ускорение (а = 0,5-0,7 м/с 2 );

Rвог – радиус вогнутой вертикальной кривой, м.

Длина участка, в пределах которого происходит уменьшение скорости движения от значения, рассчитанного по уравнению (23.14), до допустимого значения, рассчитанного по формуле:

где

V1 – скорость на подходе к участку с ограниченной скоростью, км/ч;

g1 – коэффициент использования тормозов (произведение g1j1 рекомендуется принимать равным 0,2 при неблагоприятном состоянии покрытия и 0,5 при нормальном состоянии);

f – коэффициент сопротивления качению;

i – продольный уклон, ‰;

Кэ – коэффициент увеличения тормозного пути (Кэ = 2-2,5).

Скорости движения в пределах участка разгона после окончания участка с ограниченной скоростью рассчитывают по уравнению (23.14).

Среднюю скорость движения на рассматриваемом участке в целом определяют по формуле (23.10).

Дата добавления: 2015-06-04 ; Просмотров: 1350 ; Нарушение авторских прав?

Читайте также:  Как промыть систему охлаждения автомобиля

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник: studopedia.su

Тяговый расчёт автомобиля (стр. 1 из 2)

Тяговый расчет автомобиля производится с целью определения его тяговых и динамических качеств. Тяговый расчет подразделяется на:

—тяговый расчет проектируемой машины;

—поверочный тяговый расчет, производимый для существующей машины.

Поверочный тяговый расчет составляют следующие отдельные задачи:

1. Определение максимальной скорости движения в заданных условиях.

2. Определение сопротивления движению и углов подъема, которые может преодолеть автомобиль на данной передаче и скорости.

Для решения задач тягового расчета необходимо построить тяговую характеристику автомобиля.

Тяговой характеристикой автомобиля называется графическая зависимость удельной силы тяги от скорости движения автомобиля на каждой передаче.

Задаваемыми параметрами обычно являются: тип автомобиля; грузоподъемность или максимальное число пассажиров; максимальная скорость движения, по шоссе с заданным коэффициентом дорожного сопротивления, максимальное дорожное сопротивление на низшей передаче трансмиссии. Указывается также тип двигателя (карбюраторный, дизельный).

Параметры, которыми задаются, могут иметь различные значения в некотором интервале. Чтобы правильно принять окончательное значение указанных выше параметров, необходимо понимать, как они влияю на тяговые качества автомобиля.

Построение тяговой характеристики автомобиля включает:

1.Определение полной массы автомобиля, кг.

2.Выбор шин и определение радиуса ведущего колеса, м.

3.Расчет и построение внешней скоростной характеристики двигателя.

4.Определение передаточного числа главной передачи.

5.Определение передаточных чисел коробки передач и дополнительной коробки.

6.Определение скорости движения.

7.Определение удельной силы тяги, построение тяговой характеристики.

ВЫПОЛНЕНИЕ ТЯГОВОГО РАСЧЕТА

1. Определение полной массы машины

Полная масса автомобиля определяется по формуле

где = 4300, кг — собственная масса машины;

п=3 — число мест в кабине;

Значения G и берутся в соответствии с заданием. Для этого предварительно подбирают тип автомобиля, параметры которого соответствуют заданным.

Для выбора шин надо определить нагрузку, приходящуюся на одно колесо автомобиля. У грузовых автомобилей типа 4×2 на переднюю ось при полном использовании грузоподъемности приходится около 25—30% нагрузки. На задней оси этих автомобилей обычно монтируются четыре шины, каждая из которых испытывает большую весовую нагрузку, чем шина переднего колеса, поэтому выбор производится по весовой нагрузке, приходящейся на одно заднее колесо. Передние и задние колеса каждого автомобиля по конструкции почти всегда одинаковы и взаимозаменяемы. Разница состоит лишь во внутреннем давлении воздуха в шинах.

По приложению подбирают тип и размеры автомобильных шин, удовлетворяющих нагрузке, приходящейся на колесо 508*260.

Определяют статический радиус колеса, который в дальнейшем условно считают равным радиусу качения 0,488 м.

3. Расчет и построение внешней характеристики двигателя

Источник: mirznanii.com

Самые быстрые машины в мире

Скорость можно наращивать почти бесконечно, но в какой-то момент это теряет практический смысл.

На каждом Гран-при Формулы 1 в Сочи невольно подслушиваю один и тот же вопрос: «Пап, а это самые быстрые машины в мире?». Вариантов ответов два: «Да, сынок, самые быстрые» или «Нет, сынок, есть еще быстрее». И оба папы по-своему правы, но им некогда вступать в длительные объяснения.

Развернутый же ответ не совсем доступен для детского понимания: все гоночные машины быстры ровно настолько, насколько это требуется для выполнения конкретной задачи. С обязательным уточнением: в некоторых гоночных дисциплинах искусственно сдерживают рост скоростей — для безопасности. Иногда этого не требуется, например в ралли-кроссе. С него и начнем краткий обзор самых быстрых гоночных машин.

Ралли-кросс: 150 км/ч

Возьмем топовый класс чемпионата мира World RX — быстрее в ралли-кроссе ничего нет и быть не может по определению. На норвежском этапе прошлого года победитель Андреас Баккеруд преодолел дистанцию финала (шесть кругов по 1019 м) за четыре минуты. Это дает нам среднюю скорость около 90 км/ч — при том что в безостановочном спринте никому не надо экономить резину или топливо. Дубасят во всю дурь!

Технические данные машин представлены скупо. Для чемпионского Audi S1 EKS RX quattro заявлено 560 л.с. и 900 Н·м. Плюс полный привод. Очевидно, что среднестатистический автомобиль с такими параметрами без труда должен набирать 300 км/ч.

Но ралли-кроссовые трассы представляют собой километровое кольцо со множеством поворотов. Самый длинный прямой участок — от силы метров двести. Так что вся мощь болидов уходит в разрыхление утрамбованного гравия и рисование черных полос на асфальтовых участках. Зрелище чумовое, но максималка выше 140–150 км/ч попросту не требуется. С этим расчетом, несомненно, настраивают 6-ступенчатые коробки передач, посему даже на бесконечной прямой машина ощутимо быстрее не поедет. По разгону до сотни — он занимает около двух секунд — ралли-кросс, тем не менее, близок к Формуле 1.

Ралли: 200 км/ч

Гравийное Ралли Финляндии — одно из самых быстрых в чемпионате мира. А в его программе выделяют легендарный скоростной участок «Оунинпохья» длиной 33 км. Лидеры гонки в прошлом году проходили его за 15 минут, со средней скоростью 132 км/ч. Это при езде по лесным дорогам с закрытыми поворотами и десятками трамплинов!

Собственно, в формате современного ралли ехать быстрее и не требуется, хотя есть и довольно прямолинейные отрезки, по полкилометра или больше, где обороты мотора упираются в ограничитель.

Читайте также:  Как подключить усилитель в автомобиле

Новый регламент, принятый в 2017 году, поднял мощность техники WRC до 380 л.с. Но вряд ли дополнительные силы пошли на увеличение максимальной скорости. Поднимешь максималку — потеряешь в динамике разгона, а там, где поворот на повороте, она важнее.

Формула‑1: 350 км/ч

Наивысшую скорость в сезоне‑2016 показал Валттери Боттас (команда Williams) — 378 км/ч. Достигнута в квалификации на бакинской трассе с ее двухкилометровым прямым участком.

В гонках скорости ниже, а официальный рекорд — 372,6 км/ч — установлен в Монце и держится с 2005 года. Но, заметим, пилоты, наиболее быстрые на длинных прямых участках, уже давно не становятся чемпионами. Болиды Mercedes быстрее 362 км/ч в прошлом году не ехали.

Как ни крути, техника Формулы 1 с ее современными 900‑сильными моторами уступает в максималке дорожному купе Bugatti Chiron, коему приписывают 420 км/ч. Хотя разгоняется он не столь шустро да и в поворотах существенно медленнее.

Схожие принципы заложены и в основу конструкции прототипов высшей категории LMP1 в чемпионате мира гонок на выносливость (WEC). Они чуть мощнее, максималка чуть выше, но средние скорости на дистанции сопоставимы с развиваемыми в гонках Формулы 1.

Можно ли машины Формулы 1 разогнать, скажем, до 500 км/ч? Легко! Скорее всего, будет достаточно поменять передаточные отношения. Но — не нужно.

Дрег-рейсинг: 530 км/ч

Так мы добрались до машин, чье предназначение — езда только по прямой, а минимальный радиус разворота может составлять десятки метров. Дрэгстеры приспособлены «выжать из себя всё» на дистанции от ⅛ до ¼ мили при старте с места.

Разгон до 100 миль в час происходит за секунду (дорожку загодя покрывают клейким составом, чтобы улучшить сцепление мягких шин низкого давления). Чемпионской скоростью на финише считается 530 км/ч, хотя в дрэге скорость не замеряют — только «время в пути». На что способен дрэгстер Top Fuel после финиша, изучено плохо, поскольку запас топлива рассчитан на 1000 футов, то есть 305 метров (ограничение введено в 2008 году из соображений безопасности). И нет коробки передач (момент передает пятидисковое «тракторное» сцепление Caterpillar), а обороты мотора не могут расти бесконечно.

Рекордные заезды: 707 км/ч

Официальные мировые рекорды скорости на суше курирует вовсе не Книга рекордов Гиннесса, а та же организация, что занимается всеми гоночными чемпионатами мира, – FIA. Поэтому установление рекордов причисляют к гонкам, да и занимаются этим чаще всего опытные гонщики. Для фиксации лучших результатов разработана сложная градация — с хода и с места, максимальная или средняя скорость на той или иной дистанции (в километрах, милях или часах), с разбивкой на десятки классов машин по типу и объему мотора (от 250 до более чем 8000 см³).

В зачете автомобилей с моторами, работа­ющими по циклу Отто, с турбонагнетателем, «абсолют» скорости достигнут на километровой дистанции с хода. Рекорд установил американский аппарат Poteet & Main Speed Demon в 2012 году на знаменитом соляном озере Бонневилль. Он попадает в класс «от 5 до 8 л», шестилитровый двигатель Chevy V8 small block выдал свыше 2500 л.с. Среди всех машин с ДВС, включая дизели и роторы, «демон скорости» показал самый высокий результат: 707,408 км/ч.

Но вот беда — рекордные заезды на достижение «абсолюта» в большинстве случаев проводят без зрителей. Это скучные закрытые мероприятия в уединенных местах. Болид в пустыне утром разок проносится туда, а после обеда — обратно (для фиксации подобных рекордов требуются «прокаты» в обе стороны). В таких случаях невольно напрашивается вопрос: «А это самые бессмысленные машины в мире?». Правильных ответов, как понимаете, здесь тоже два.

НЕАВТОМОБИЛЬНЫЕ ГОНКИ

Абсолютный мировой рекорд скорости на суше — 1227,985 км/ч (Thrust SSC, 1997). Но не совсем честно считать автомобилем два турбореактивных мотора с небольшой кабиной пилота между ними — это скорее сухопутный самолет. Оно и выглядит как самолет.

Самая высокая скорость, развитая мотоциклом, составляет 634,217 км/ч (Top 1 Ack Attack Streamliner, 2013; на фото). За мотоцикл в этом случае принимают также нечто ракетоподобное на двух колесах, с двумя моторами объемом 1,3 л от супербайка Suzuki Hayabusa.

Достижение, признанное рекордом скорости на воде, принадлежит катеру Spirit of Australia с турбореактивным двигателем Westinghouse J34. В 1978 году он разогнался до 511,11 км/ч.

Рекорды скорости в воздухе были установлены военными самолетами и официально не подтверждены. Скорее всего, некоторые результаты вообще не разглашались. Считают, что предела достиг американский разведывательный Lockheed SR‑71A в 1976 году — 3529,56 км/ч.

Вообще, самой высокой скоростью, развитой плодом инженерного творчества в пределах планеты Земля, называют какой-то не постижимый разумом показатель 10 430 км/ч, достигнутый в 1994 году беспилотной четырехступенчатой ракетой, двигавшейся по рельсам.

Источник: www.zr.ru