Как проверить фотоэлемент мультиметром

ПРОВЕРКА ФОТОДИОДОВ

Для оценки качества фотодиода собирают схему, приведенную на рис. 1, снимают вольтамперные характеристики проверяемого образца и определяют его основные параметры, то есть темновой ток и интегральную чувствительность.

Рис. 1. Схема соединения источника питания и измерительных приборов с фотодиодом для снятия его вольт-амперной характеристики

В качестве источника света используют 75-ваттную лампу накаливания, свет от которой собирают в параллельный пучок с помощью линзы. Постоянство светового потока обеспечивают питанием лампы от стабилизированного источника переменного напряжения.

В радиолюбительской практике проверку исправности фотодиода упрощают, сводя ее к внешнему осмотру и измерению омметром прямого и обратного сопротивлений затемненного и освещенного фотодиода.

Процесс упрощенного испытания заключается в следующем:

1) присоединяют испытываемый диод к гнездам «Общ» и « Ω X 100» омметра (рис. 2, а) и замечают показания омметра при освещении диода настольной лампой мощностью 60-100 Вт (расстояние между фотодиодом и баллоном лампы принимают равным 60—80 мм) и затемнении его путем прикрытия окна диода пальцем;

2) меняют местами выводы фотодиода (рис. 2, б) и снова измеряют сопротивления при затемнении и освещении испытываемого образца.

Рис. 2. Схемы соединения фотодиода с омметром при упрощенном испытании фотодиодов

Если в первом случае сопротивление фотодиода, равное, например, при его освещении двум-трем десяткам килоом, увеличивается при затемнении до 150 —200 кОм, а во втором случае (рис, 2, 6) — возрастает от 1500 Ом (при освещении) до 1530 — 1560 Ом (при затемнении), то испытываемый образец считают исправным.

В случае отсутствия омметра фотодиод проверяют с помощью микроамперметра и гальванического элемента, например типа 332 или 373.

Испытание включает такие операции:

1) собирают схему, приведенную на рис. 3, и, затемняя фотодиод, замечают показание микроамперметра;

Рис. 3. Схема соединения источника питания с полупроводниковым и измерительным приборами при испытании фотодиода с помощью микроамперметра

2) подносят к окну для засветки фотодиода настольную лампу мощностью 60-150 Вт и замечают второе показание прибора; если последнее превосходит первое в 5 — 15 раз (например, изменяется с 5 – 8 до 50 -75 мкА), то испытываемый фотодиод считают исправным.

И, наконец, самый простой способ проверки фотодиода. Присоединяют к испытываемому образцу тестер ТТ-1, предварительно подготовленный для измерения постоянных токов до 0,2 мA, и наблюдают за стрелкой прибора при изменении освещенности.

Так как собственная э, д. с, фотодиода в неосвещенном состоянии практически равна нулю и внешний Источник напряжения отсутствует, то стрелка тестера вначале не отклоняется.

Затем подносят фотодиод к включенной настольной лампе мощностью 60 – 100 Вт. Если испытываемый образец исправен и расстояние между ним и лампой составляет 20 — 25 см, то под действием света э. д. с. фотодиода увеличивается и ток в цепи возрастает до 50 – 100 мкА.

Чем лучше испытываемый фотодиод, меньше расстояние между ним и лампой и больше освещенность, тем на большую величину возрастает фототок при переходе от неосвещенного состояния к освещенному.

В заключение несколько слов о проверке фотодиодов на «ползучесть»

В некоторых фотодиодах наблюдается нежелательное явление, проявляющееся в хаотическом изменении тока через электронно-дырочный переход, несмотря на отсутствие внешних воздействий. Это непостоянство обратного тока фотодиода получило название «ползучести».

Проверку фотодиода на «ползучесть» осуществляют путем подачи на испытываемый образец в запирающем направлении постоянного напряжения, равного 9 В (рис. 4), и наблюдения в течение некоторого времени за величиной обратного тока.

Рис. 4. Схема соединения фотодиода с источником питания и микроамперметром при испытании фотодиода на «ползучесть».

Если стрелка микроамперметра во время этой проверки остается неподвижной, то испытываемый образец считают выдержавшим испытание на «ползучесть».

Источник: zadereyko.info

Как проверить ИК-приёмник?

Проверка приёмника инфракрасного сигнала

Как известно, ИК-приёмник представляет собой специализированную микросхему. Это осложняет его проверку. Но, несмотря на это проверить ИК-приёмник можно. Для этого понадобятся кое-какие приспособления. А именно:

Блок питания. Желательно, чтобы блок питания был стабилизированный с выходным напряжением 5 вольт. Можно с успехом использовать самодельный блок питания с регулируемым выходным напряжением.

Цифровой мультиметр. Подойдёт любой цифровой мультиметр с возможностью измерения постоянного напряжения.

Любой исправный пульт дистанционного управления (ДУ).

Перед тем как начать проверку ИК-модуля необходимо определить цоколёвку его выводов. Если этого не сделать, то можно «спалить» ИК-модуль. Если к вам в руки попал неизвестный ИК-приёмник, то не стоит торопиться с его подключением. Для начала нужно внимательно осмотреть его со всех сторон и найти его маркировку. Далее по маркировке находим даташит на данную модель ИК-приёмника на сайте alldatasheet.com или через поиск Гугла. О том, как это сделать читайте здесь. Как правило, в даташите есть рисунок с указанием цоколёвки. Разобраться по нему легко.

Для модели приёмника TSOP31236, на котором и будут проводиться испытания, цоколёвка имеет следующий вид.

Вывод под номером 1 – это вывод общего провода (GND). К этому выводу подключается минусовой провод блока питания. Вывод под номером 2 – это плюсовой вывод (Vs). К нему подключается плюсовой провод блока питания. Вывод под номером 3 – это выход сигнала приёмника (OUT).

Если необходимое оборудование подготовлено, а цоколёвка выводов ИК-приёмника определена, то собираем проверочную схему. Собирать проверочную схему лучше на беспаечной макетной плате. Это займёт пару минут. Если беспаечной макетной платы нет, то придётся спаять проверочную схему навесным монтажом.

Итак, собираем или паяем проверочную схему. Плюсовой вывод от блока питания (+5 V) подключаем к плюсовому выводу ИК-модуля (Vs), минус – к минусовому выводу ИК-приёмника (GND). А третий вывод ИК-приёмника (OUT) подключаем к плюсовому ( красному ) щупу мультиметра. Минусовой (чёрный) щуп мультиметра подключаем к общему проводу (GND) проверочной схемы. Мультиметр переключаем в режим измерения постоянного напряжения (DC) на предел 20 V.

Методика проверки.

Тем, кто уже узнал, что такое ИК-приёмник известно, что пока на ИК-приёмник не попадает излучение от пульта ДУ, на его выходе присутствует напряжение практически равное напряжению его питания. То есть 5 вольт. Оно не измениться до тех пор, пока на чувствительный фотодиод приёмника не начнут попадать «пачки» инфракрасных импульсов от пульта ДУ. На фото видно, что на выходе (OUT) ИК-приёмника 5,03 вольт.

Суть проверки заключается в том, чтобы проверить изменение напряжения на выходе ИК-модуля при попадании на него инфракрасного излучения от любого пульта ДУ.

Как только на фотодиод ИК-приёмника начнут падать пачки инфракрасных импульсов от пульта ДУ, то напряжение на его выходе будет падать. В теории оно должно падать практически до нуля, но поскольку мультиметр не успевает среагировать на изменение напряжения, то он будет показывать падение напряжения на несколько сотен милливольт. Напомним, что сигнал пульта ДУ имеет форму пачек импульсов. Именно поэтому рядовой мультиметр и не успевает отразить на дисплее столь быстрые изменения напряжения на выходе модуля.

Читайте также:  Покраска уаз буханка в камуфляж

Жмём на любую кнопку пульта ДУ и не отпускаем. При этом будет видно, как на дисплее мультиметра значение напряжения упадёт с 5,03 вольт до 4,57. Напряжение на выходе уменьшилось на 460 милливольт (mV).

Если отпустить кнопку пульта ДУ, то на дисплее значение напряжения вновь восстановиться до 5 вольт.

Как видим, приёмник инфракрасного сигнала исправно реагирует на сигнал с пульта ДУ. Значит ИК-модуль исправен. Аналогичным образом можно проверить и другие приёмники инфракрасного сигнала в модульном исполнении.

Думаю, понятно, что если ИК-приёмник не реагирует на сигналы с пульта ДУ и на его выходе напряжение не меняется ни на милливольт, то с большой степенью вероятности можно утверждать о том, что ИК-приёмник неисправен. На практике проводилась проверка ИК-приёмника HS0038 взятого из цветного телевизора, который сгорел во время грозы. Так вот, при проверке ИК-приёмника оказалось, что на его выходе отсутствует напряжение даже в «ждущем» режиме, а ток потребления равен 0. ИК-модуль оказался сгоревшим (скорее всего из-за превышения напряжения питания более 6 вольт).

Среди инфракрасных приёмников серии TSOP и аналогичных есть так называемые низковольтные экземпляры. В своей маркировке они имеют цифру 3. Представителем такого низковольтного ИК-модуля является TSOP 31236. Данный ИК-приёмник работает уже при напряжении питания 3 вольта.

Если проверяется низковольтный экземпляр ИК-приёмника (например, такой как TSOP31236), то на ИК-модуль можно подать напряжение питания как в 3 вольта, так и в 5 вольт. Методика проверки такого ИК-приёмника аналогична описанной.

При проверке приёмников инфракрасного сигнала стоит помнить, что любой из них имеет в своём составе фильтр. Фильтр этот настроен на определённую частоту, обычно лежащую в диапазоне 30-40 килогерц. Но на практике в руки может попасть и ИК-модуль с частотой настройки фильтра и 56, и 455 килогерц (мало ли ). Так вот, инфракрасный сигнал от рядового пульта такой приёмник может быть и будет принимать, но на выходе сигнала не будет. Почему? Потому что пульт ДУ будет излучать сигнал промодулированный частотой, например, 36 килогерц, а приёмник настроен на приём сигнала, промодулированный частотой в 455 килогерц. Понятно, что в таком случае сигнал просто не пройдёт через фильтр.

Для широко распространённых ИК-приёмников серии TSOP и аналогов частота настройки фильтра обычно составляет 36; 36,7 и 38 килогерц. Они хорошо принимают сигнал практически от любого пульта ДУ, взятого от бытовой электроники. И даже если частота фильтра не совсем совпадает с частотой модуляции сигнала от пульта ДУ, сигнал будет приниматься. Иногда для этого требуется всего лишь ближе поднести пульт к ИК-приёмнику.

Источник: go-radio.ru

Как проверить ИК-приёмник?

Проверка приёмника инфракрасного сигнала

Как известно, ИК-приёмник представляет собой специализированную микросхему. Это осложняет его проверку. Но, несмотря на это проверить ИК-приёмник можно. Для этого понадобятся кое-какие приспособления. А именно:

Блок питания. Желательно, чтобы блок питания был стабилизированный с выходным напряжением 5 вольт. Можно с успехом использовать самодельный блок питания с регулируемым выходным напряжением.

Цифровой мультиметр. Подойдёт любой цифровой мультиметр с возможностью измерения постоянного напряжения.

Любой исправный пульт дистанционного управления (ДУ).

Перед тем как начать проверку ИК-модуля необходимо определить цоколёвку его выводов. Если этого не сделать, то можно «спалить» ИК-модуль. Если к вам в руки попал неизвестный ИК-приёмник, то не стоит торопиться с его подключением. Для начала нужно внимательно осмотреть его со всех сторон и найти его маркировку. Далее по маркировке находим даташит на данную модель ИК-приёмника на сайте alldatasheet.com или через поиск Гугла. О том, как это сделать читайте здесь. Как правило, в даташите есть рисунок с указанием цоколёвки. Разобраться по нему легко.

Для модели приёмника TSOP31236, на котором и будут проводиться испытания, цоколёвка имеет следующий вид.

Вывод под номером 1 – это вывод общего провода (GND). К этому выводу подключается минусовой провод блока питания. Вывод под номером 2 – это плюсовой вывод (Vs). К нему подключается плюсовой провод блока питания. Вывод под номером 3 – это выход сигнала приёмника (OUT).

Если необходимое оборудование подготовлено, а цоколёвка выводов ИК-приёмника определена, то собираем проверочную схему. Собирать проверочную схему лучше на беспаечной макетной плате. Это займёт пару минут. Если беспаечной макетной платы нет, то придётся спаять проверочную схему навесным монтажом.

Итак, собираем или паяем проверочную схему. Плюсовой вывод от блока питания (+5 V) подключаем к плюсовому выводу ИК-модуля (Vs), минус – к минусовому выводу ИК-приёмника (GND). А третий вывод ИК-приёмника (OUT) подключаем к плюсовому ( красному ) щупу мультиметра. Минусовой (чёрный) щуп мультиметра подключаем к общему проводу (GND) проверочной схемы. Мультиметр переключаем в режим измерения постоянного напряжения (DC) на предел 20 V.

Методика проверки.

Тем, кто уже узнал, что такое ИК-приёмник известно, что пока на ИК-приёмник не попадает излучение от пульта ДУ, на его выходе присутствует напряжение практически равное напряжению его питания. То есть 5 вольт. Оно не измениться до тех пор, пока на чувствительный фотодиод приёмника не начнут попадать «пачки» инфракрасных импульсов от пульта ДУ. На фото видно, что на выходе (OUT) ИК-приёмника 5,03 вольт.

Суть проверки заключается в том, чтобы проверить изменение напряжения на выходе ИК-модуля при попадании на него инфракрасного излучения от любого пульта ДУ.

Как только на фотодиод ИК-приёмника начнут падать пачки инфракрасных импульсов от пульта ДУ, то напряжение на его выходе будет падать. В теории оно должно падать практически до нуля, но поскольку мультиметр не успевает среагировать на изменение напряжения, то он будет показывать падение напряжения на несколько сотен милливольт. Напомним, что сигнал пульта ДУ имеет форму пачек импульсов. Именно поэтому рядовой мультиметр и не успевает отразить на дисплее столь быстрые изменения напряжения на выходе модуля.

Жмём на любую кнопку пульта ДУ и не отпускаем. При этом будет видно, как на дисплее мультиметра значение напряжения упадёт с 5,03 вольт до 4,57. Напряжение на выходе уменьшилось на 460 милливольт (mV).

Если отпустить кнопку пульта ДУ, то на дисплее значение напряжения вновь восстановиться до 5 вольт.

Как видим, приёмник инфракрасного сигнала исправно реагирует на сигнал с пульта ДУ. Значит ИК-модуль исправен. Аналогичным образом можно проверить и другие приёмники инфракрасного сигнала в модульном исполнении.

Думаю, понятно, что если ИК-приёмник не реагирует на сигналы с пульта ДУ и на его выходе напряжение не меняется ни на милливольт, то с большой степенью вероятности можно утверждать о том, что ИК-приёмник неисправен. На практике проводилась проверка ИК-приёмника HS0038 взятого из цветного телевизора, который сгорел во время грозы. Так вот, при проверке ИК-приёмника оказалось, что на его выходе отсутствует напряжение даже в «ждущем» режиме, а ток потребления равен 0. ИК-модуль оказался сгоревшим (скорее всего из-за превышения напряжения питания более 6 вольт).

Читайте также:  Портативный телевизор для авто

Среди инфракрасных приёмников серии TSOP и аналогичных есть так называемые низковольтные экземпляры. В своей маркировке они имеют цифру 3. Представителем такого низковольтного ИК-модуля является TSOP 31236. Данный ИК-приёмник работает уже при напряжении питания 3 вольта.

Если проверяется низковольтный экземпляр ИК-приёмника (например, такой как TSOP31236), то на ИК-модуль можно подать напряжение питания как в 3 вольта, так и в 5 вольт. Методика проверки такого ИК-приёмника аналогична описанной.

При проверке приёмников инфракрасного сигнала стоит помнить, что любой из них имеет в своём составе фильтр. Фильтр этот настроен на определённую частоту, обычно лежащую в диапазоне 30-40 килогерц. Но на практике в руки может попасть и ИК-модуль с частотой настройки фильтра и 56, и 455 килогерц (мало ли ). Так вот, инфракрасный сигнал от рядового пульта такой приёмник может быть и будет принимать, но на выходе сигнала не будет. Почему? Потому что пульт ДУ будет излучать сигнал промодулированный частотой, например, 36 килогерц, а приёмник настроен на приём сигнала, промодулированный частотой в 455 килогерц. Понятно, что в таком случае сигнал просто не пройдёт через фильтр.

Для широко распространённых ИК-приёмников серии TSOP и аналогов частота настройки фильтра обычно составляет 36; 36,7 и 38 килогерц. Они хорошо принимают сигнал практически от любого пульта ДУ, взятого от бытовой электроники. И даже если частота фильтра не совсем совпадает с частотой модуляции сигнала от пульта ДУ, сигнал будет приниматься. Иногда для этого требуется всего лишь ближе поднести пульт к ИК-приёмнику.

Источник: go-radio.ru

Фототранзистор своими руками: ltr 4206e, фт 1к, arduino

Фоточувствительные приборы используются в разных отраслях электроники и радиотехники. Все больше сейчас применяется фототранзистор, у которого более простой принцип работы, нежели у фотодиодов.

Что это такое и где применяется

Фототранзистор – это полупроводниковый прибор оптоволоконного типа, который используется для управления электрическим током при помощи определенного оптического излучения. Эти устройства разработаны на базе обычного транзистора. Их современными аналогами являются фотодиоды, но фототранзисторы лучше подходят для многих современных радио и электронных приборов. По принципу действия, они напоминают также фоторезисторы.

Фото — фототранзистор

В отличие от фотодиодов, у этих полупроводников более высокая чувствительность.

Где используется фототранзистор:

  1. Охранные системы (в основном, используются ИК-фототранзисторы);
  2. Кодеры;
  3. Компьютерные логические системы управления;
  4. Фотореле;
  5. Автоматическое управление освещения (здесь также используется инфракрасный фото-полупроводник);
  6. Датчики уровня и системы подсчета данных.

Нужно отметить, что из-за диапазона Вольт гораздо чаще в подобных системах используются фотодиоды, но фототранзисторы имеют несколько существенных преимуществ:

  1. Могут производить больший ток, чем фотодиоды;
  2. Эти радиодетали сравнительно очень дешевые;
  3. Могут обеспечить мгновенный высокий ток на выходе;
  4. Главным достоинством приборов является то, что они могут обеспечить высокое напряжение, чего, к примеру, не сделают фоторезисторы.

При этом данный аналог светодиода имеет существенные недостатки, что делает фототранзистор довольно узкоспециализированной деталью:

  1. Многие полупроводниковые устройства выполнены из силикона, они не способны обрабатывать напряжение свыше 1000 вольт.
  2. Данные радиодетали очень чувствительны к перепадам напряжения в локальной электрической сети. Если диод не перегорит от скачка напряжения, то транзистор, скорее всего, не выдержит испытания;
  3. Фототранзистор не подходит для использования в лампах из-за того, что не позволяет быстро двигаться направленным заряженным частицам.

Принцип работы

Фототранзистор работает так же, как и транзистор, где ток направляется к коллектору, ключевым отличием является то, что в данном приборе, электроток контролируется только двумя активными контактами.

Фото — простой фототранзистор

В простой схеме, при условии, что ничего не подключено к фототранзистору, базовый ток регулируется при помощи определенного оптического излучения, которое определяет коллектор. Электроток попадает на полупроводник только после резистора. Таким образом, напряжение на приборе будет двигаться от высокого к низкому, в зависимости от уровня оптического излучения. Для усиления сигнала можно подключить устройство к специальному оборудованию. Выход фототранзистора зависит от длины волны падающего света. Этот полупроводник реагирует на свет в широком диапазоне волн в зависимости от спектра работы. Выход фототранзистора определяется площадью открытой переходной коллектор-базы и постоянного тока усиления транзистора.

Фототранзистор бывает разного типа действия, про это говорят основные схемы включения устройства. Виды прибора:

  1. Оптический изолятор (напоминает по принципу трансформатор, у которого входы заблокированы при помощи электрических контактов);
  2. Фотореле;
  3. Датчики. Применяются в охранных системах. Это активные приборы, излучающие свет. При формировании и выделении определенного импульса, полупроводниковый прибор сразу же рассчитывает силу его возвращения. Если сигнал не вернулся или вернулся с другой частотой, то срабатывает сигнализация (как в охранных системах ИК).

Маркировки и основные параметры

Фототранзисторы, которые управляются внешними факторами, имеют обозначение аналогичное обычным транзисторам. На рисунке ниже Вы можете видеть, как такой датчик схематически показывается на чертеже.

Фото — обозначение транзисторов

При этом VT1, VT2 – это фототранзисторы и база, а VT3 – без базы (например, из мышки). Обратите внимание, цоколевка показана также, как у обычных транзисторов.

Вместе с прочими приборами полупроводникового типа (n-p-n), использующимися для трансформации излучения, эти устройства являются оптронами. Соответственно, их можно изобразить как светодиод в корпусе либо как оптроны (с двумя стрелками, находящимися под углом 90 градусов к базе коллектора). Усилитель на большинстве таких схем обозначается так же, как и база коллектора.

Основные характеристики фототранзисторов LTR 4206E, ФТ 1К и ИК-SFH 305-2/3:

Название Ток коллектора, mA Ток фотоэлемента, mA Напряжение, V Область использования Длина волны, nm
LTR 4206E 100 4,8 30 Радиоэлектронные схемы. 940
ФТ 1К 100 0,4 30 Логические системы управления, сигнализация и т. д. 940
ИК-SFH 305-2/3 (Osram) 50 0.25 – 0.8 32 Охранные системы, роботы, датчики препятствия Arduino (Ардуино) на фототранзисторе. 850

При этом светосинхронизатор ФТ 1 выполнен из кремния, что дает ему явное преимущество – долговечность и устойчивость к перепадам напряжения. ВАХ представляют собой формулу:

Фото — формула ВАХ

Расчет производится так же, как и у биполярных транзисторов.

В зависимости от потребностей, Вы можете купить фототранзистор SMD PT12-21, КТФ-102А или LTR 4206E (перед тем, как взять деталь, нужно проверить её работоспособность). Цена от 3 рублей до нескольких сотен.

Видео: как проверить работу фототранзистора

Пример использования

Если Вы хотите своими руками сделать устройство, для которого необходим фототранзистор, можно разработать простую интеллектуальную систему. Робот по этой схеме будет реагировать на свет, в зависимости от настройки, он будет от него убегать или наоборот, выходить на источник освещения.

Чтобы самому сделать робота, необходимо приготовить:

  1. Микросхему L293D;
  2. Небольшой моторчик, можно взять даже от детской игрушки;
  3. Любые отечественные фототранзисторы и полевые резисторы с сопротивлением на менее 200 Ом;
  4. Кабеля для соединения и корпус, где будет расположен механизм.
Читайте также:  Как сделать распылитель для побелки своими руками

Схема робота

Как видно по схеме, фототранзистор здесь – это своеобразный микроконтроллер, как ATMEGA, который определяет источник света, даже его подключение аналогично. Вы можете при использовании паяльника сделать простой механизм, который будет следовать даже за тенью. Подобные импортные приборы выпускает компания BEAM, но, естественно, там более мощная оптопара. Для работы устройства Вам нужно только правильно подключить фототранзистор к схеме и питанию.

На обозначении есть пункты GDR и VCC. Первое – это заземление, второе – питание. Обратите внимание, рядом с питанием стоит значок 5В – это значит, что батарея должна быть минимум на 5 вольт.

Принцип действия такого робота прост: когда свет попадает на фототранзистор, на микросхеме происходит включение мотора. Это реализуется, потому что приемник подал положительный сигнал. Заводится самодельный мотор и прибор начинает двигаться.

Использование резистора в этой схеме необходимо для регулировки электрического тока. Также от сопротивления резистора зависит долговечность оптической детали, если он перегреется – то фототранзистору потребуется замена. Для работы очень важно подключить все провода также, как и на схеме. Выключатель к роботу можно приделать от обычной шариковой ручки, он будет разрывать связь между микросхемой и фототранзистором. Проверка робота производится путем исследования его реакции на свет и тень.

Источник: www.asutpp.ru

Электроника для всех

Блог о электронике

Фотодатчик. Часть 1

Наверняка многим захочется присобачить к AVR фотодетектор, чтобы отслеживать хотя бы наличие или отсутствие света. Это полезно как для роботостроителей, так и для тех кто делает всякую автоматику. Итак, кратко опишу какие бывают фотодетекторы.

Фоторезистор
ИМХО вымирающий вид. Последний раз я его видел еще в детстве. Обычно представляет собой такой металический кругляк со стеклянным окошком, в котором видна этакая сероватая зигзагообразная дорожка. При освещении его сопротивление падает, правда незначительно, раза в три четыре.

Фототранзистор
Последнее время я на них натыкаюсь постоянно, неиссякаемый источник фототранзисторов — пятидюймовые дисководы. Последний раз я, по цене грязи, надыбал на радио барахолке штук 5 платок от дисковертов, там светотранзисторы стоят напротив дырок контроля записи и вращения дискеты. Еще сдвоенный фототранзистор (а может и фотодиод, как повезет) стоит в обычной шариковой мышке.
Выглядит как обычный светодиод, только корпус прозрачный. Впрочем, светодиоды тоже такие же бывают так что перепутать кто из них кто раз плюнуть. Но это не беда, партизан легко вычисляется обычным мультиметром. Достаточно включить омметр между его эмитером и коллектором (базы у него нет) и посветить на него, как его сопротивление рухнет просто катастрофически — с десятков килоом до считанных ом. Тот который у меня в детекторе вращения шестерен в роботе меняет свое сопротивление с 100кОм до 30 Ом. Работает фототранзистор подобно обычному — держит ток, но в качестве управляющего воздействия тут не ток базы, а световой поток.

Фотодиод
Внешне ничем не отличается от фототранзистора или обычного светодиода в прозрачном корпусе. Также порой встречаются древние фотодиоды в металлических корпусах. Обычно это совковые девайсы, марки ФД-чето там. Такой металлический цилиндрик с окошком в торце и торчащими из задницы проводками.

В отличии от фототранзистора, может работать в двух разных режимах. В фотогальваническом и фотодиодном.
В первом, фотогальваническом, варианте фотодиод ведет себя как солнечная батарейка, то есть посветил на него — на выводах возникло слабенькое напряжение. Его можно усилить и применить =). Но куда проще работать в фотодиодном режиме. Тут мы подаем на фотодиод обратное напряжение. Поскольку он хоть и фото, но диод, то в обратную сторону напряжение не пойдет, а значит его сопротивление будет близко к обрыву, а вот если его засветить, то диод начнет очень сильно подтравливать и сопротивление его будет резко падать. Причем резко, на пару порядков, как у фототранзистора.

Спектр
Кроме типа прибора у него еще есть рабочий спектр. Например, фотодетектор заточенный на инфракрасный спектр (а их большинство) практически не реагирует на свет зеленого или синего светодиода. Плохо реагирует на лампу дневного света, но хорошо реагирует на лампу накаливания и красный светодиод, а уж про инфракрасный и говорить нечего. Так что не удивляйся если у тебя фотодатчик плохо реагирует на свет, возможно ты со спектром ошибся.

Подключение
Теперь пора показать как это подключить к микроконтроллеру. С фоторезистором все понятно, тут заморочек нет никаких — берешь и подцепляешь как по схеме.
С фотодиодом и фототранзистором сложней. Надо определить где у него анод/катод или эмитер/коллектор. Делается это просто. Берешь мультиметр, ставишь его в режим прозвонки диодов и цепляешься на свой датчик. Мультиметр в этом режиме показывает падение напряжения на диоде/транзисторе, а падение напряжения тут в основном зависит от его сопротивления U=I*R. Берешь и засвечиваешь датчик, следя за показаниями. Если число резко уменьшилось, значит ты угадал и красный провод у тебя на катоде/коллекторе, а черный на аноде/эмитторе. Если не изменилось, поменяй выводы местами. Если не помогло, то либо детектор дохлый, либо ты пытаешься добиться реакции от светодиода (кстати, светодиоды тоже могут служить детекторами света, но там не все так просто. Впрочем, когда будет время я покажу вам это технологическое извращение).

Теперь о работе схемы, тут все элементарно. В затемненном состоянии фотодиод не пропускает ток в обратном направлении, фототранзистор тоже закрыт, а у фоторезистора сопротивление весьма высоко. Сопротивление входа близко к бесконечности, а значит на входе будет полное напряжение питания aka логическая единица. Стоит теперь засветить диод/транзистор/резистор как сопротивление резко падает, а вывод оказывается посажен наглухо на землю, ну или весьма близко к земле. Во всяком случае сопротивление будет куда ниже 10кОмного резистора, а значит напряжение резко пропадет и будет где то на уровне логического нуля. В AVR и PIC можно даже резистор не ставить, вполне хватит внутренней подтяжки. Так что DDRx=0 PORTx=1 и будет вам счастье. Ну а обратывать это как обычную кнопку. Единственная сложность может возникнуть с фоторезистором — у него не настолько резко падает сопротивление, поэтому до нуля может и не дотянуть. Но тут можно поиграть величиной подтягивающего резистора и сделать так, чтобы изменения сопротивления хватало на переход через логический уровень.

Если надо именно измерять освещенность, а не тупо ловить светло/темно, то тогда надо будет подцеплять все на АЦП и подтягивающий резистор делать переменным, для подстройки параметров.

Есть еще продвинутый тип фотодатчиков — TSOP там встроенный детектор частоты и усилитель, но о нем я напишу чуть попозже.

З.Ы.
У меня тут некоторые запарки, поэтому сайт будет сильно тупить с обновлением, думаю это до конца месяца. Дальше надеюсь вернуться в прежний ритм.

Источник: easyelectronics.ru